当前位置:高中试题 > 数学试题 > 函数的表示方法 > 若直角坐标平面内M、N两点满足:①点M、N都在函数f(x)的图像上;②点M、N关于原点对称,则称这两点M、N是函数f(x)的一对“靓点”。已知函数则函数f(x)...
题目
题型:不详难度:来源:
若直角坐标平面内M、N两点满足:
①点M、N都在函数f(x)的图像上;
②点M、N关于原点对称,则称这两点M、N是函数f(x)的一对“靓点”。
已知函数则函数f(x)有          对“靓点”。
答案
1
解析
本试题主要是考查了新定义的理解和运用。

设y=x-3上任取一点M(x,y)(x>0)
则关于原点对称的点为N(-x,-y),
根据“靓点”的定义可知点N(-x,-y)在函数f(x)的图象上,
则f(-x)=3-x=-y
∴y=x-3,-y=3-x,x>0即3-x=3-x(x>0)方程3-x=3-x(x>0)解的个数可看成y=3-x,y=3-x(x>0)的图象的交点个数,作出y=3-x,y=3-x(x>0)的图象可知有且只有一个交点,故函数f(x)有一对“靓点”.故答案为:1
解决该试题的关键是理解”靓点”的定义,并结合图像判定得到求解。
核心考点
试题【若直角坐标平面内M、N两点满足:①点M、N都在函数f(x)的图像上;②点M、N关于原点对称,则称这两点M、N是函数f(x)的一对“靓点”。已知函数则函数f(x)】;主要考察你对函数的表示方法等知识点的理解。[详细]
举一反三
某城市出租车起步价为10元,最长可租乘3km(含3km),以后每1km为1.6元(不足1km,按1km计费),若出租车行驶在不需等待的公路上,则出租车的费用y(元)与行驶的里程x(km)之间的函数图象大致为(   )
题型:不详难度:| 查看答案
已知函数满足:①定义域为;②对任意,有;③当时,.则方程在区间内的解的个数是(    )  
A.18B.12C.11D.10

题型:不详难度:| 查看答案
(本小题12分)已知函数
(1)作出函数的图像;
(2)解不等式
题型:不详难度:| 查看答案
已知函数(其中),在同一坐标系中画出其中的两个函数在第一象限内的图像,其中正确的是(  )
题型:不详难度:| 查看答案
(本小题满分12分)某工厂用万元钱购买了一台新机器,运输安装费用千元,每年投保、动力消耗的费用也为千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为千元,第二年为千元,第三年为千元,依此类推,即每年增加千元.
(Ⅰ)求使用年后,保养、维修、更换易损零件的累计费用S(千元)关于的表达式;
(Ⅱ)问这台机器最佳使用年限是多少年?并求出年平均费用(单位:千元)的最小值.(最佳使用年限是指使年平均费用最小的时间,年平均费用=(购入机器费用+运输安装费用+每年投保、动力消耗的费用+保养、维修、更换易损零件的累计费用)÷机器使用的年数 )
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.