当前位置:高中试题 > 数学试题 > 函数的相关概念 > 某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售高订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价降低0....
题目
题型:不详难度:来源:
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售高订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?
答案
(1) .
(2)P=f(x)=N,
(3)销售商一次订购500个零件时,该厂获得的利润是6 000元;如果订购1 000个,利润是11 000元
解析

试题分析:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为个,
.
(2)当时,P="60."
当100<x<550时,P=60-0.02(x.
时,P="51."
P=f(x)=N,
(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则
L="(P-40)x="   
当x=500时,L="6" 000;
当x="1" 000时,L="11" 000.
即销售商一次订购500个零件时,该厂获得的利润是6 000元;如果订购1 000个,利润是11 000元
点评:典型题,解答此类问题的基本步骤是:审清题意,设出变量,布列函数,多法求解。求最值使,可考虑利用导数、均值定理、二次函数性质等等。
核心考点
试题【某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售高订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价降低0.】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
已知函数.关于的方程有解,则实数的取值范围是      _____    .
题型:不详难度:| 查看答案
已知函数定义在上且,对于任意实数都有,设函数的最大值和最小值分别为,则=            .
题型:不详难度:| 查看答案
设函数
(1)设,证明:在区间内存在唯一的零点;
(2)设为偶数,,求的最小值和最大值;
(3)设,若对任意,有,求的取值范围;
题型:不详难度:| 查看答案
设函数,的两个极值点为,线段的中点为.
(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;
(2) 如果点在第四象限,求实数的范围;
(3) 证明:点也在函数的图象上,且为函数图象的对称中心.
题型:不详难度:| 查看答案
(本小题满分12分)
已知函数
(I)求x为何值时,上取得最大值;
(II)设是单调递增函数,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.