题目
题型:不详难度:来源:
求证:FD2=FB·FC.
答案
解析
证明 ∵E是Rt△ACD斜边AC的中点,
∴DE=EA,∴∠A=∠2.
又∵∠1=∠2,∠1=∠A.
∵∠FDC=∠CDB+∠1=90°+∠1,
∠FBD=∠ACB+∠A=90°+∠A,
∵∠FDC=∠FBD.
又∵∠F是公共角.
∴△FBD∽△FDC,∴=,
∴FD2=FB·FC.
核心考点
试题【如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.求证:FD2=FB·FC.】;主要考察你对圆锥曲线性质探讨等知识点的理解。[详细]
举一反三
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连接FG,如果α=45°,AB=4,AF=3,求FG的长.