当前位置:高中试题 > 数学试题 > 反证法 > 已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点....
题目
题型:不详难度:来源:
已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点.
答案
证明:假设函数f(x)的图象与x轴至少有两个交点,…(2分)
(1)若f(x)的图象与x轴有两个交点,不妨设两个交点的横坐标分别为x1,x2,且x1<x2 ,…(5分)
由已知,函数f(x)对其定义域内任意实数x1,x2,当x1<x2时,有f(x1)<f(x2).…(7分)
又根据假设,x1,x2是函数f(x)的两个零点,所以,f(x1)=f(x2)=0,…(9分)
这与f(x1)<f(x2)矛盾,…(10分)
所以,函数f(x)的图象不可能与x轴有两个交点.…(11分)
(2)若f(x)的图象与x轴交点多于两个,可同理推出矛盾,…(12分)
所以,函数f(x)的图象不可能与x轴有两个以上交点.
综上,函数f(x)的图象与x轴至多有一个交点…(14分)
核心考点
试题【已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点.】;主要考察你对反证法等知识点的理解。[详细]
举一反三
用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.三角形的内角至少有一个钝角
B.三角形的内角至少有两个钝角
C.三角形的内角没有一个钝角
D.三角形的内角没有一个钝角或至少有两个钝角
已知直线a、b、c,其中a、b是异面直线,ca,b与c不相交.用反证法证明b、c是异面直线.
若a2+b2=c2,求证:a,b,c不可能都是奇数.
用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.
求证:定义在实数集上的单调减函数y=f(x)的图象与x轴至多只有一个公共点.