要证明+<2+,在合情推理法、演绎推理法、分析法和综合分析法中,选用的最适合的证法是______. |
分析法是执果索因,基本步骤:要证…只需证…,只需证… 分析法是从求证的不等式出发,找到使不等式成立的充分条件, 本题从所给的不等式入手,整出一定成立的事实, 故答案为:分析法 |
核心考点
试题【要证明3+7<2+6,在合情推理法、演绎推理法、分析法和综合分析法中,选用的最适合的证法是______.】;主要考察你对
直接证明与间接证明等知识点的理解。
[详细]
举一反三
试分别用综合法、分析法、反证法等三种方法,证明下列结论:已知0<a<1,则+≥9. |
已知数列{an}满足a1=1,an+1-2an=2n,则an=______ |
分析法是从要证的不等式出发,寻求使它成立的( )A.充分条件 | B.必要条件 | C.充要条件 | D.既不充分又不必要条件 | 已知函数f(x)=log2x (Ⅰ)若f(x)的反函数是函数y=g(x),解方程g(2x)=2g(x)+10; (Ⅱ)对于任意a、b、c∈[M,+∞),M>1且a≥b≥c.当a,b,c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试分别探究下面两个问题: (1)当1<M<2时,是否存在a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,以f(a)、f(b)、f(c)不能作为三角形的三边长. (2)M≥2,证明:对于任a、b、c∈[M,+∞),且a≥b≥c,当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)总能作为三角形的三边长. |
|