当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 已知集合A={a1,a2,a3…an},记和ai+aj(1≤i≤j≤n)中所有不同值的个数为M(A),如当A={1,2,3,4}时,由1+2=3,1+3=4,1...
题目
题型:不详难度:来源:
已知集合A={a1,a2,a3…an},记和ai+aj(1≤i≤j≤n)中所有不同值的个数为M(A),如当A={1,2,3,4}时,由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.对于集合B={b12,b3…bn},若实数b1,b2…bn成等差数列,则M(B)等于(  )
A.2n-3B.2n-2C.2n-1D.2n
答案
对于集合B={b1,b2,b3,…,bn},若实数b1,b2,b3,…,bn成等差数列,
则 bi+bj (1≤i<j≤m,i,j∈N)的值列成如下各列所示图表:
b1+b2,b2+b3,b3+b4,…,bn-1+bn
b1+b2,b2+b4,b3+b5,…,bn-2+bn
   …,…,…,
b1+bn-2,b2+bn-1,b3+bn
b1+bn-1,b2+bn
b1+bn
∵数列{bn}是等差数列,
∴b1+b4=b2+b3,b1+b5=b2+b4,…,b1+bn=b2+bn-1
∴第二列中只有 b2+bn 的值和第一列不重复,即第二列剩余一个不重复的值,
同理,以后每列剩余一个与前面不重复的值,
∵第一列共有n-1个不同的值,后面共有n-1列,
∴所有不同的值有:n-1+n-2=2n-3,故M(B)=2n-3,
故选A.
核心考点
试题【已知集合A={a1,a2,a3…an},记和ai+aj(1≤i≤j≤n)中所有不同值的个数为M(A),如当A={1,2,3,4}时,由1+2=3,1+3=4,1】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
真命题:“经过双曲线
x2
4
-
y2
5
=1
的左焦点作直线l交双曲线于M、N两点,当|MN|=5,则符合条件的直线有3条”将此命题推广到一般的双曲线,并且使已知命题是推广命题的特例,则推广的真命题可以是______.
题型:不详难度:| 查看答案
设x、y是两个实数,给出下列五个条件:①x+y>1;②x+y=2;③;x+y>2;④x2+y2>2;⑤xy>1.其中能推出“x、y中至少有一个数大于1”的条件是______.
题型:不详难度:| 查看答案
与圆类似,连接圆锥曲线上两点的线段叫做圆锥曲线的弦.过有心曲线(椭圆、双曲线)中心(即对称中心)的弦叫做有心曲线的直径.对圆x2+y2=r2,由直径所对的圆周角是直角出发,可得:若AB是圆O的直径,M是圆O上异于A、B的一点,且AM,BM均与坐标轴不平行,则kAM•kBM=-1.类比到椭圆
x2
a2
+
y2
b2
=1
,类似结论是______
题型:不详难度:| 查看答案
设数列{an}是等差数列,其中am=a,an=b,am+n=
b•n-a•m
n-m
,用类比的思想方法,在等比数列{bn}中,若bm=a,bn=b,写出______.
题型:不详难度:| 查看答案
设凸n边形对角线条数为f(n),则凸n+1边形的对角线条数为f(n+1)=f(n)+______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.