当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=bn-amn-m;现已知等比数列{bn}(bn>0,n∈N*),b...
题目
题型:不详难度:来源:
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=
bn-am
n-m
;现已知等比数列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若类比上述结论,则可得到bm+n=______.
答案
等差数列中的bn和am可以类比等比数列中的bn和am
等差数列中的bn-am可以类比等比数列中的
bn
am

等差数列中的
bn-am
n-m
可以类比等比数列中的
n-m
bn
am


故bm+n=
n-m
bn
am


故答案为
n-m
bn
am

核心考点
试题【已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=bn-amn-m;现已知等比数列{bn}(bn>0,n∈N*),b】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|


a
|2=


a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是______.
题型:不详难度:| 查看答案
在平面内,1条直线把平面分成2部分,2条直线最多把平面分成4部分,3条直线最多把平面分成7部分,…,则n条直线最多把平面分成f(n)部分,则f(n)=______.
题型:不详难度:| 查看答案
边长为a的正三角形内任一点到三边距离之和为定值


3
2
a
,类比到空间,棱长均为a的三棱锥内任一点到各面距离之和为(  )
A.


3
a
3
B.


6
a
2
C.


6
a
3
D.


2
a
2
题型:不详难度:| 查看答案
如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且


F2M


MP
=0
.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得|OM|=
1
2
|NF1|=…=a
.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且


F2M


MP
=0
.则|OM|的取值范围是 ______.
题型:不详难度:| 查看答案
我们知道等比数列与等差数列在许多地方都有类似的性质,请由等差数列{an}的前n项和公式Sn=na1+
n(n-1)
2
d
(d为公差),类比地得到等比数列{bn}的前n项积公式Tn=______(q为公比)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.