当前位置:高中试题 > 数学试题 > 向量求夹角 > 已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又BA1⊥AC1,(1)求证:AC1⊥平面A1BC...
题目
题型:辽宁省月考题难度:来源:

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求C1到平面A1AB的距离;
(3)求二面角A-A1B-C的余弦值。

答案
解:(1)∵A1在底面ABC上的射影为AC的中点D,
∴平面A1ACC1⊥平面ABC,
∵BC⊥AC且平面A1ACC1∩平面ABC=AC,
∴BC⊥平面A1ACC1
∴BC⊥AC1
∵AC1⊥BA1且BC∩BA1=B,
∴AC1⊥平面A1BC。
(2)如图所示,以C为坐标原点建立空间直角坐标系,
∵AC1⊥平面A1BC,
∴AC1⊥A1C,
∴四边形A1ACC1是菱形,
∵D是AC的中点,
∴∠A1AD=60°,
∴A(2,0,0),A1(1,0,),B(0,2,0), C1(-1,0,),
=(1,0,),=(-2,2,0),
设平面A1AB的法向量=(x,y,z),

令z=1,
=(,1),
=(2,0,0),

∴C1到平面A1AB的距离是
(3)平面A1AB的法向量=(,1),平面A1BC的法向量=(-3,0,),

设二面角A-A1B-C的平面角为θ,θ为锐角,

∴二面角A-A1B-C的余弦值为
核心考点
试题【已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又BA1⊥AC1,(1)求证:AC1⊥平面A1BC】;主要考察你对向量求夹角等知识点的理解。[详细]
举一反三
如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别是A1D1和CC1的中点。
(Ⅰ)求证:EF∥平面ACD1
(Ⅱ)求面EFB和底面ABCD所成角的余弦值大小。

题型:广西自治区月考题难度:| 查看答案
如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,AF=2,CE=3,BD=1,O为BC的中点。
(1) 求证:AO∥平面DEF;
(2) 求证:平面DEF⊥平面BCED;
(3) 求平面DEF与平面ABC相交所成锐角二面角的余弦值。

题型:山东省期中题难度:| 查看答案
如图,四棱锥P-ABCD中,底面ABCD是∠ADC=60°的菱形,侧面PDC是边长为2的正三角形,且与底面ABCD垂直,M为PB的中点。
(1)求证:PA⊥平面CDM;
(2)求二面角D-MC-B的余弦值。

题型:江西省月考题难度:| 查看答案

如图,已知矩形ABCD的边AB=2 ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE⊥平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。

题型:广东省月考题难度:| 查看答案
如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,
(I)求证:平面EAB⊥平面ABCD;
(II)求二面角A-EC-D的余弦值。

题型:河北省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.