当前位置:高中试题 > 数学试题 > 向量求夹角 > 如图,已知矩形ABCD的边AB=2 ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的...
题目
题型:广东省月考题难度:来源:

如图,已知矩形ABCD的边AB=2 ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE⊥平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。

答案
解:(1)证明:∵

又∵,且PC∩PF=P,
∴PE⊥平面PFC,
∵PF平面PFC,
∴平面PEC⊥平面PFC;
(2)如图,建立坐标系,则


易知是平面PAE的法向量,
设MN与平面PAE 所成的角为θ,

(3)易知是平面PAE的法向量,设平面PEC的法向量

且x-z=0,
所以
所以二面角A-PE-C的大小为135°。
核心考点
试题【如图,已知矩形ABCD的边AB=2 ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的】;主要考察你对向量求夹角等知识点的理解。[详细]
举一反三
如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,
(I)求证:平面EAB⊥平面ABCD;
(II)求二面角A-EC-D的余弦值。

题型:河北省模拟题难度:| 查看答案
如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°。
(1)求证:BD⊥平面ADG;
(2)求平面AEFG与平面ABCD所成锐二面角的余弦值。

题型:模拟题难度:| 查看答案
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为平行四边形,且AD=2,AB=AA1=3,∠BAD=60°,E为AB的中点,
(Ⅰ) 证明:AC1∥平面EB1C;
(Ⅱ)求直线ED1与平面EB1C所成角的正弦值。
题型:山东省模拟题难度:| 查看答案
已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成角为θ,点B1在底面上的射影D落在BC上,
(1)求证:AC⊥平面BB1C1C;
(2)若,且当AC=BC=AA1=3时,求二面角C-AB-C1的大小。
题型:广东省模拟题难度:| 查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,∠DAC=∠ABC=90°,
(Ⅰ)证明:AD⊥PC;
(Ⅱ)求PD与平面PBC所成角的大小。
题型:贵州省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.