当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,(1)试判断直线AB与平面DEF的位置关...
题目
题型:0127 期中题难度:来源:
正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

答案
解:(1)如图,在△ABC中,E、F分别是AC、BC的中点,
∴EF∥AB,
又AB平面DEF,EF平面DEF,
∴AB∥平面DEF。 (2)以点D为坐标原点,直线DB、DC为x轴、y轴,
建立空间直角坐标系,
则A(0,0,2)B(2,0,0)C(0,2,0),

平面CDF的法向量为
设平面EDF的法向量为



所以平面BDC与平面DEF夹角的余弦值为(3)在平面坐标系xDy中,
直线BC的方程为



所以在线段BC上存在点P,使AP⊥DE。
核心考点
试题【正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,(1)试判断直线AB与平面DEF的位置关】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
在正方体ABCD-A1B1C1D1中,E ,F ,G ,H ,M ,N 分 别是正方体六个面的中心,求证:平面EFG ∥平面HMN.
题型:同步题难度:| 查看答案
在正三棱锥P-ABC中,三条侧棱两两互相垂直,G是△PAB的重心,E、F分别为BC、PB上的点,且BE:EC= PF:FB=1:2.求证:平面CEF⊥平面PBC.
题型:同步题难度:| 查看答案
正方体ABCD-A1B1C1D1的棱长为1 ,求平面AB1D1与平面BDC1的距离.
题型:同步题难度:| 查看答案
在正方体ABCD-A1B1C1D1 中,E是棱BC 的中点, 试在棱CC1上求一点P ,使得平面A1B1P ⊥平面C1DE .
题型:同步题难度:| 查看答案
根据下列条件,判断相应的线、面位置关系.    (1) 直线l1、l2的方向向量分别是a= (1 ,-3 ,-1 ),b=(8 ,2 ,2) ;    
(2) 平面α、β的法向量分别是u=(1,3 ,0) ,v=(-3 ,-9 ,0) ;   
(3) 直线l 的方向向量、平面α的法向量分别是a=(1 ,-4 ,-3) ,u=(2 ,0 ,3) ;    
(4) 直线l 的方向向量、平面α的法向量分别是a=(3 ,2 ,1) ,u= (-1 ,2 ,-1 ).
题型:同步题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.