当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.(1)求证:平面AED⊥平面A1FD1;(2)在AE上求一点M,使得A1M⊥平面ADE....
题目
题型:不详难度:来源:
在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1
(2)在AE上求一点M,使得A1M⊥平面ADE.
答案
(1)证明略 (2) 当=时,A1M⊥平面ADE
解析
  建立如图所示的空间直角坐标系D—xyz,
不妨设正方体的棱长为2,
则A(2,0,0),E(2,2,1),
F(0,1,0),A1(2,0,2),D1(0,0,2),
设平面AED的法向量为n1=(x1,y1,z1),
则n1·=(x1,y1,z1)·(2,0,0)=0,
n1·=(x1,y1,z1)·(2,2,1)=0,
∴2x1=0,2x1+2y1+z1=0.
令y1=1,得n1=(0,1,-2),
同理可得平面A1FD1的法向量n2=(0,2,1).
∵n1·n2=0,∴n1⊥n2,
∴平面AED⊥平面A1FD1.
(2)解 由于点M在直线AE上,
==(0,2,1)=(0,2).
可得M(2,2),∴=(0,2-2),
∵AD⊥A1M,∴要使A1M⊥平面ADE,
只需A1M⊥AE,
·=(0,2-2)·(0,2,1)=5-2=0,
解得=.
故当=时,A1M⊥平面ADE.
核心考点
试题【在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.(1)求证:平面AED⊥平面A1FD1;(2)在AE上求一点M,使得A1M⊥平面ADE.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图所示,在长方体ABCD—A1B1C1D1中,AB=BC=1,BB1=2,

E是棱CC1上的点,且CE=CC1.
(1)求三棱锥C—BED的体积;
(2)求证:A1C⊥平面BDE.
题型:不详难度:| 查看答案
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.
求证:MN∥平面A1BD.
题型:不详难度:| 查看答案
如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,
AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:
(1)PA⊥BD;
(2)平面PAD⊥平面PAB.
题型:不详难度:| 查看答案
如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.
求证:MN∥平面AA1C1.
题型:不详难度:| 查看答案
如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.