当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > (本小题满分12分)在直三棱柱中,是中点.(1)求证://平面;(2)求点到平面的距离;(3)求二面角的余弦值....
题目
题型:不详难度:来源:
(本小题满分12分)
在直三棱柱中,中点.

(1)求证://平面
(2)求点到平面的距离;
(3)求二面角的余弦值.
答案
(1)见解析;(2) ;(3 )二面角的余弦值为
解析
本试题主要是考查了立体几何中线面平行的判定和线面垂直的判定以及二面角的求解的综合运用。
(1)利用线线平行得到线面平行的郑敏,这是一般的思路。
(2)合理的建立空间直角坐标系,然后根据斜向量在法向量上的投影,借助于向量的数量积的性质得到结论。
(3)根据上一问中的 法向量和法向量的夹角可以得到二面角平面角的求解。
解答:
(1)连结,连结.
   …….4分
(2) 如图建立坐标系,

,,
,
 
设平面的法向量为
    所以.  ……………..8分
(3 )平面的法向量为. 所以
所以二面角的余弦值为…………………………………………….12分
核心考点
试题【(本小题满分12分)在直三棱柱中,是中点.(1)求证://平面;(2)求点到平面的距离;(3)求二面角的余弦值.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
(本题满分14分)已知正四棱锥的底面边长为中点.

(Ⅰ)求证://平面
(Ⅱ)若是二面角的平面角,求直线与平面所成角的余弦值.
题型:不详难度:| 查看答案
(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小。
题型:不详难度:| 查看答案
(本题满分14分)如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成

(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,  
的取值范围,使得二面角P-AD-M为钝二面角。
题型:不详难度:| 查看答案
(本题满分14分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。

(1)若AA1=2,求证:
(2)若AA1=3,求二面角C1—BD—C的余弦值.
题型:不详难度:| 查看答案
是不同的直线,是不同的平面,则下列结论错误的是(    )
A.若
B.若,则
C.若,则
D.若,则

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.