当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > (本小题满分16分)如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点.(1...
题目
题型:不详难度:来源:
(本小题满分16分)
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,MN分别是A1B1A1A的中点.

(1)求的长;
(2)求的值;
(3)求证:A1BC1M(14分).
答案
(1)
(2)见解析。
解析
本题考查线段的长和两异面直线夹角余弦值的求法,解题时要恰当地建立空间直角坐标系,合理地运用 向量的夹角公式进行求解.以及向量的数量积证明垂直。
(1)以C为原点建立空间直角坐标系,B(0,a,0),N(a,0,a),由此能求出|BN |
(2)A1(a,0,2a),C(0,0,0),B1(0,a,2a),BA1 =(a,-a,2a), CB1=(0,a,2a),再由cos< BA1 , CB1>,能求出BA1,CB1夹角的余弦值.
(3)同理利用垂直来证明数量积为零即可。
(1);…..5分
(2);…..6分
(3)……5分


核心考点
试题【(本小题满分16分)如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点.(1】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
(本小题满分14分)
如图:四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPA=AB=1,AD=,点FPB的中点,点E在边BC上移动.

(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°                  
题型:不详难度:| 查看答案
(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.

(1)求证:
(2)求证:
题型:不详难度:| 查看答案
是两条不同的直线,是两个不同的平面,
有下列四个命题:
①若  ;
,则
③若
④若
其中正确的命题是      .(写出所有真命题的序号).
题型:不详难度:| 查看答案
点P为ΔABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA=PB=PC,则点O是ΔABC的(  )                                   
A.内心B.外心C.重心D.垂心

题型:不详难度:| 查看答案
在下列关于直线与平面的命题中,正确的是 ( )
A.若,则B.若,则.
C.若,则D.若,则

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.