当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.⑴求证:AF//平面BCE;⑵求证:平面BCE⊥平面CDE....
题目
题型:不详难度:来源:
如图,已知平面是正三角形,AD=DEAB,且F是CD的中点.

⑴求证:AF//平面BCE;
⑵求证:平面BCE⊥平面CDE.
答案
(1)详见解析;⑵详见解析.
解析

试题分析:(1)要证AF//平面BCE就需要在平面BCE内找一条直线与AF平行.
取CE中点P,易证ABPF为平行四边形,从而问题得证.
⑵证面面垂直,首先考虑评点哪条线垂直哪个面.
很容易得,AF⊥CD,故考虑证明AF⊥平面CDE.那么需要在平面CDE内再找一条直线与AF垂直.找哪一条呢? ∵DE⊥平面ACD, AF平面ACD,∴DE⊥AF,这样便可使问题得证.
试题解析:(1)取CE中点P,连结FP、BP。
∵F为CD的中点,∴FP//DE,且FP=    2分
又AB//DE,且AB=∴AB//FP,且AB=FP,
∴ABPF为平行四边形,∴AF//BP.
又∵AF平面BCE,BP平面BCE,∴AF//平面BCE.           6分
⑵∵△ACD为正三角形,∴AF⊥CD.
∵DE⊥平面ACD, AF平面ACD,
∴DE⊥AF
又AF⊥CD,CD∩DE=D,
∴AF⊥平面CDE.                          8分
又BP//AF,∴BP⊥平面CDE。                    10分
又∵BP平面BCE,
∴平面BCE⊥平面CDE.                12分
核心考点
试题【如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.⑴求证:AF//平面BCE;⑵求证:平面BCE⊥平面CDE.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
在如图的几何体中,平面为正方形,平面为等腰梯形,.

(1)求证:平面
(2)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
如图,在三棱锥中,的中点,的中点,且为正三角形.

(1)求证:平面
(2)若,求点到平面的距离.
题型:不详难度:| 查看答案
如图1所示,正△ABC中,CD是AB边上的高, E、F分别是AC、BC的中点.现将△ACD沿CD折起,使平面平面BCD(如图2),则下列结论中不正确的是(  )

A.AB//平面DEF             B.CD⊥平面ABD
C.EF⊥平面ACD             D.V三棱锥C—ABD=4V三棱锥C—DEF
题型:不详难度:| 查看答案
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=

(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
题型:不详难度:| 查看答案
已知直线,平面,且,给出下列命题: 
①若,则m⊥;      ②若,则m∥
③若m⊥,则;      ④若m∥,则.其中正确命题的个数是(   )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.