当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。(Ⅰ)求证:平面FGH⊥平...
题目
题型:不详难度:来源:
如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。

(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
答案
(Ⅰ)详见解析;(Ⅱ)在线段PC上存在一点M,使PB⊥平面EFM,PM=
解析

试题分析:(Ⅰ)求证:平面平面,证明面面垂直,先证线面垂直,即证一个平面过另一个平面的垂线,注意到F,H分别为线段PB,PC的中点,所以FH∥BC,只要CB⊥平面,则FH⊥平面,由已知EA⊥平面ABCD,则EA⊥CB,而四边形ABCD是正方形,CB⊥AB,从而可得CB⊥平面,即可证出平面平面;(Ⅱ)这是一个探索性命题,一边假设存在,作为条件,进行推理即可,有已知条件,先判断EF⊥PB(因为若EF不垂直PB,则点就不存在),若PB⊥平面EFM,只需使PB⊥FM,注意到三角形是一个直角三角形,这样△PFM∽△PCB,利用线段比例关系,可得PM=,从得结论.
试题解析:(Ⅰ)因为EA⊥平面ABCD,所以EA⊥CB.
又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE. 3分
由已知F,H分别为线段PB,PC的中点,所以FH∥BC,则FH⊥平面ABE.  5分
而FH⊂平面FGH,所以平面FGH⊥平面ABE. 6分
(Ⅱ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下:在直角三角形AEB中,因为AE=1,AB=2,所以BE= ,
在直角梯形EADP中,因为AE=1,AD=PD=2,所以PE= ,所以PE=BE.
又因为F为PB的中点,所以EF⊥PB...8分
要使PB⊥平面EFM,只需使PB⊥FM.    ..9分
因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC⊂平面PCD,所以CB⊥PC.
若PB⊥FM,则△PFM∽△PCB,可得 ,      11分
由已知可求得PB=,PF=,PC=,所以PM=    ..12分
核心考点
试题【如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。(Ⅰ)求证:平面FGH⊥平】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
是两个不重合的平面,m、m是两条不重合的直线,则以下结论错误的是
A.若,则
B.若,则
C.若,则
D.若,则

题型:不详难度:| 查看答案
已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:
①若,,则;②若,,且,则;③若,,则; ④若,,且,则.其中正确命题的序号是(    )
A.①④ B.②③ C.②④D.①③

题型:不详难度:| 查看答案
在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.

(1)当E点是AB中点时,求证:直线ME‖平面ADD1 A1
(2)若二面角AD1EC的余弦值为.求线段AE的长.
题型:不详难度:| 查看答案
在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.
题型:不详难度:| 查看答案
如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.