当前位置:高中试题 > 数学试题 > 平面的法向量 > 四棱锥中,底面为平行四边形,侧面面,已知(Ⅰ)求证:;(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明; (Ⅲ)求直线与面所成角的正弦值。...
题目
题型:不详难度:来源:
四棱锥中,底面为平行四边形,侧面,已知
(Ⅰ)求证:
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。

答案
(1)(2)详见试题解析; 
解析

试题分析:(Ⅰ)要证线线垂直只要证明线面垂直,利用题中数据求出底面平行四边形的各边的长度,找到 及 是等腰三角形,利用等腰三角形中线是高结论找到“线线垂直”关系(Ⅱ)要找线面平行先找线线平行,要找线线平行先找面面交线,即平面 与平面交线 , 注意到为中点的特点,即可导致,从而推出线面平行 (Ⅲ)建立空间直角坐标系,确定关键点的坐标,再运用空间向量进行运算.

 

 
试题解析:(Ⅰ)证明:连接AC,
由余弦定理得  2分
中点,连接,则.
 
       4分
(Ⅱ)当的中点时,
证明:连接 ,在中,  ,又 平面 ,
平面面 平面.  7分
(3)如图,以射线OA为X轴,以射线OB为轴,以射线OS为轴,以为原点,建立空间直角坐标系,则
      
9分
设平面法向量为
,则

   11分   
所以直线与面所成角的正弦值为12分
核心考点
试题【四棱锥中,底面为平行四边形,侧面面,已知(Ⅰ)求证:;(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明; (Ⅲ)求直线与面所成角的正弦值。】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
如图,四棱锥P—ABCD中,为边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,,E为PD点上一点,满足

(1)证明:平面ACE平面ABCD;
(2)求直线PD与平面ACE所成角正弦值的大小.
题型:不详难度:| 查看答案
如图,在长方体,中,,点在棱AB上移动.

(Ⅰ)证明:;
(Ⅱ)当的中点时,求点到面的距离;
(Ⅲ)等于何值时,二面角的大小为.
题型:不详难度:| 查看答案
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为

(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
题型:不详难度:| 查看答案
如图所示,正方形与矩形所在平面互相垂直,,点的中点.

(1)求证:∥平面
(2)求证:
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,平面平面是等腰直角三角形,,四边形是直角梯形,,点分别为的中点.

(1)求证:平面
(2)求直线和平面所成角的正弦值;
(3)能否在上找到一点,使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由 .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.