当前位置:高中试题 > 数学试题 > 平面的法向量 > 已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(1)求异面直线GE与PC所...
题目
题型:不详难度:来源:
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4

(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,求的值.
答案
(1),(2)
解析

试题分析:法一:空间向量法。(1)以为坐标原点,以所在直线分别为轴建立空间直角坐标系。根据已知条件得点的坐标,再得向量的坐标。用向量数量积公式求向量所成角的余弦值,但应注意空间两异面直线所成的角为锐角或直角,所以两异面所成角的余弦值为向量所成角的余弦值的绝对值。(2)根据题意设,根据,可得的值,根据比例关系即可求得的值。法二:普通方法。(1)根据异面直线所成角的定义可过点作//,则(或其补角)就是异面直线所成的角. 因为////,则四边形为平行四边形,则,故可在中用余弦定理求。(2)由可得,过为垂足。易得证平面,可得,从而易得证//,可得,即可求的值。
试题解析:解法一:
(1)如图所示,以点为原点建立空间直角坐标系



故异面直线所成角的余弦值为.
(2)设

在平面内过点作为垂足,则
,∴
解法二:
(1)在平面内,过点作//,连结,则(或其补角)就是异面直线所成的角.

中,
由余弦定理得,
∴异面直线所成角的余弦值为.
(2)在平面内,过为垂足,连结,又因为

平面 ∴
由平面平面,∴平面 ∴//
,∴
,∴.
核心考点
试题【已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(1)求异面直线GE与PC所】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
在正三棱柱ABC—A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为(  )
A.30° B.45°C.60° D.90°

题型:不详难度:| 查看答案
如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.