当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.(1)证明:在平面BCE上,一定存在过...
题目
题型:不详难度:来源:
如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.
答案
(1)见解析   (2)
解析
解:(1)证明:由已知得,BE∥AF,BC∥AD,BE∩BC=B,AD∩AF=A,
∴平面BCE∥平面ADF.
设平面DFC∩平面BCE=l,则l过点C.
∵平面BCE∥平面ADF,平面DFC∩平面BCE=l,
平面DFC∩平面ADF=DF.
∴DF∥l,即在平面BCE上一定存在过点C的直线l,使得DF∥l.
(2)∵FA⊥AB,FA⊥CD,AB与CD相交,
∴FA⊥平面ABCD.
故以A为原点,AD,AB,AF分别为x轴,y轴,z轴建立空间直角坐标系,如图.由已知得,D(1,0,0),C(2,2,0),F(0,0,2),

=(-1,0,2),=(1,2,0).
设平面DFC的一个法向量为n=(x,y,z),
不妨设z=1.
则n=(2,-1,1),不妨设平面ACD的一个法向量为m=(0,0,1).
∴cos〈m,n〉=
由于二面角F­CD­A为锐角,
∴二面角F­CD­A的余弦值为.
核心考点
试题【如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.(1)证明:在平面BCE上,一定存在过】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,四棱锥中,,底面为梯形,,且.

(1)求证:;
(2)求二面角的余弦值.
题型:不详难度:| 查看答案
如图,三棱柱中,△ABC是正三角形,,平面平面.

(1)证明:
(2)证明:求二面角的余弦值;
(3)设点是平面内的动点,求的最小值.
题型:不详难度:| 查看答案
在直角梯形中,,如图,把沿翻折,使得平面平面

(1)求证:
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图几何体中,四边形为矩形,.

(1)若的中点,证明:
(2)求二面角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.