当前位置:高中试题 > 数学试题 > 充要条件 > 下列四个条件中,使a>b成立的必要而不充分的条件是(  )A.a>b+1B.a>b-1C.a2>b2D.a3>b3...
题目
题型:不详难度:来源:
下列四个条件中,使a>b成立的必要而不充分的条件是(  )
A.a>b+1B.a>b-1C.a2>b2D.a3>b3
答案
“a>b”不能推出“a>b+1”,故选项A不是“a>b”的必要条件,不满足题意;
“a>b”能推出“a>b-1”,但“a>b-1”不能推出“a>b”,故满足题意;
“a>b”不能推出“a2>b2”,故选项C不是“a>b”的必要条件,不满足题意;
“a>b”能推出“a3>b3”,且“a3>b3”能推出“a>b”,故是充要条件,不满足题意;
故选B.
核心考点
试题【下列四个条件中,使a>b成立的必要而不充分的条件是(  )A.a>b+1B.a>b-1C.a2>b2D.a3>b3】;主要考察你对充要条件等知识点的理解。[详细]
举一反三
给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2-x(x>0)的反函数是y=-log2x(0<x<1);
③设f(x)=
1-2x
x+1
(x≥1)
,数列{an}满足an=f(n),n∈N*,则{an}是单调递减数列;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称.其中所有正确命题的序号是______.
题型:不详难度:| 查看答案
若不等式
x-m+1
x-2m
<0
成立的一个充分非必要条件是
1
3
<x<
1
2
,则实数m的取值范围是(  )
A.(-∞,
1
4
]∪[
4
3
,+∞)
B.[
1
4
4
3
]
C.[
1
6
3
2
]
D.以上结论都不对
题型:普陀区一模难度:| 查看答案
求证:当f(x)=ax2+bx+c(a≠0)时,方程ax2+bx+c=0有不等实根的充要条件是:存在x0∈R使得a•f(x0)<0.
题型:不详难度:| 查看答案
已知函数f(x)是定义在R上的偶函数,则“f(x)是周期函数”的一个充要条件是(  )
A.f(x)=cosxB.∀α∈R,f(α+x)=f(α-x)
C.f(1+x)=f(1-x)D.∃α∈R(α≠0),f(α+x)=f(α-x)
题型:武清区一模难度:| 查看答案
给定p:x<-3或x>1,q:2<x<3,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.