当前位置:高中试题 > 数学试题 > 四种命题的概念 > 定义域和值域均为[-a,a]的函数y=f(x)和y=g(x)的图象如图所示,其中a>c>b>0,给出下列四个命题:①方程f[g(x)]=0有且仅有三个解;②方程...
题目
题型:武昌区模拟难度:来源:
定义域和值域均为[-a,a]的函数y=f(x)和y=g(x)的图象如图所示,其中a>c>b>0,给出下列四个命题:
①方程f[g(x)]=0有且仅有三个解;
②方程g[f(x)]=0有且仅有三个解;
③方程f[f(x)]=0有且仅有九个解;
④方程g[g(x)]=0有且仅有一个解.
其中正确命题的个数是(  )
A.1B.2C.3D.4
魔方格
答案
①设t=g(x),则由f[g(x)]=0,即f(t)=0,当t=0时,则t=g(x)有三个不同值,由于y=g(x)是减函数,所有三个解,所以①正确.
②设t=f(x),若g[f(x)]=0,即g(t)=0,则t=b,所以f(x)=b,因为c>b>0,所以对应f(x)=b的解有3个,所以②正确.
③设t=f(x),若f[f(x)]=0,即f(t)=0,t=-b或t=0或t=b,则f(x)=-b,或f(x)=0,或f(x)=b,因为a>c>b>0,所以每个方程对应着三个解,所以共9个解,所以③正确.
④设t=g(x),若g[g(x)]=0,即g(t)=0,所以t=b,则g(x)=b,因为y=g(x)是减函数,所以方程g(x)=b只有1解,所以④正确.
故选D.
核心考点
试题【定义域和值域均为[-a,a]的函数y=f(x)和y=g(x)的图象如图所示,其中a>c>b>0,给出下列四个命题:①方程f[g(x)]=0有且仅有三个解;②方程】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2
按从大到小排列正确的是z>x>y;
③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤-3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的实数a的取值范围是0<a<
1
2

⑥关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

其中正确的有______(请把所有满足题意的序号都填在横线上)
题型:不详难度:| 查看答案
给出下列命题:
①常数列既是等差数列,又是等比数列;
②A,B是△ABC的内角,且A>B,则sinA>sinB;
③在数列{an}中,如果n前项和Sn=2n2+1,则此数列是一个公差为4的等差数列;
④若向量


a


b
方向相同,且|


a
|>|


b
|,则


a
+


b


a
-


b
方向相同;
⑤{an}是等比数列,Sn为其前n项和,则S4,S8-S4,S12-S8成等比数列.
则上述命题中正确的有______ (填上所有正确命题的序号)
题型:不详难度:| 查看答案
现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②已知a>2b>0,则a2+
8
b(a-2b)
的最小值为16;
③数列{n(n+4)(
2
3
)n}中的最大项是第4项

④设函数f(x)=





lg|x-1|,x≠1
0,x=1
,则关于x的方程f2(x)+2f(x)=0有4个解.
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有______.(写出所有真命题的编号)
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:
①b<0;
②b2-4ac>0;
③4a-2b+c>0;
④a-b+c<0.
其中正确结论的序号有______.(写出所有正确结论的序号)魔方格
题型:不详难度:| 查看答案
给出下列四个命题:
①函数f(x)=3x-6的零点是2;
②函数f(x)=x2+4x+4的零点是-2;
③函数f(x)=log3(x-1)的零点是1;
④函数f(x)=2x-1的零点是0.
其中正确的个数为(  )
A.1B.2C.3D.4
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.