当前位置:高中试题 > 数学试题 > 四种命题的概念 > 设函数f(x)=-3x|x|+bx+c,则下列命题中正确命题的序号是______.①当b<0时,f(x)在R上有最大值;②函数f(x)的图象关于点(0,c)对称...
题目
题型:不详难度:来源:
设函数f(x)=-3x|x|+bx+c,则下列命题中正确命题的序号是______.
①当b<0时,f(x)在R上有最大值;
②函数f(x)的图象关于点(0,c)对称;
③方程f(x)=0可能有3个实根;
④存在b,c的值,使f(x)为偶函数;
⑤一定存在实数a,使f(x)在[a,+∞)上单调递减.
答案
对于①,b<0,可设b=-1,c=0,得f(x)=-3x|x|-x,此时函数为R上的减函数,没有最大值,故①错;
对于②,因为f(-x)=3x|x|-bx+c,所以f(-x)+f(x)=2c,可得函数f(x)的图象关于点(0,c)对称,故②正确;
对于③,可设b=3,c=0,得f(x)=-3x|x|+3x,方程f(x)=0的根有1、-1和0,刚好3个.故③正确;
对于④,设f(-x)=f(x),即3x|x|-bx+c=-3x|x|+bx+c,找不到b、c的值使此式子恒成立,所以不存在b,c的值,使f(x)为偶函数,故④错;
对于⑤,当b=-1,c=0时,f(x)=-3x|x|-x在R上为减函数,此时对任意实数a,f(x)在[a,+∞)上单调递减,
故⑤正确.
故答案为:②③⑤
核心考点
试题【设函数f(x)=-3x|x|+bx+c,则下列命题中正确命题的序号是______.①当b<0时,f(x)在R上有最大值;②函数f(x)的图象关于点(0,c)对称】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
对于函数f(x)=
x
1+|x|
 (x∈R)
,下列判断中,正确结论的序号是______(请写出所有正确结论的序号).
①f(-x)+f(x)=0;      ②当m∈(0,1)时,方程f(x)=m总有实数解;
③函数f(x)的值域为R;   ④函数f(x)的单调减区间为(-∞,+∞).
题型:不详难度:| 查看答案
给出四个命题:
①函数f(x)=x+
1
x
的单调递增区间是(-∞,-1]∪[1,+∞);②如果y=f(x)是偶函数,则它的图象一定与y轴相交;③如果y=f(x)是奇函数,则它的图象一定过坐标原点;④函数y=(
1
10
)


x
的值域是(0,+∞).其中错误命题的序号是______.
题型:不详难度:| 查看答案
有下列四个命题:①“若b=3,则 b2=9”的逆命题;②“全等三角形的面积相等”的否命题;③“若c≤1,则 x2+2x+c=0有实根”;④“若A∪B=A,则B⊆A”的逆否命题.其中真命题的序号是______.
题型:不详难度:| 查看答案
下列四个命题:
①定义在R上的函数f(x)满足f(-2)=f(2),则f(x)不是奇函数;
②定义在R上的函数f(x)恒满足f(-x)=|f(x)|,则f(x)一定是偶函数;
③一个函数的解析式为y=x2,它的值域为{0,1,4},这样的不同函数共有9个;
④设函数f(x)=ln(x+


1+x2
)-x,则对于定义域中的任意x1,x2(x1≠x2),恒有
f(x1)-f(x2
x1-  x2
>-1

其中为真命题的序号有______(填上所有真命题的序号)
题型:不详难度:| 查看答案
已知命题:若p:|x-1|>a成立 则q:2x2-3x+1>0成立.若原命题为真命题,且其逆命题为假命题.求实数a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.