当前位置:高中试题 > 数学试题 > 四种命题的概念 > 关于函数f(x)=loga1+x1-x(a>0且a≠1)下列说法:①f(x)的定义域是(-1,1);②当a>1时,使f(x)>0的x的取值范围是(-1,0);③...
题目
题型:不详难度:来源:
关于函数f(x)=loga
1+x
1-x
(a>0且a≠1)下列说法:
①f(x)的定义域是(-1,1);
②当a>1时,使f(x)>0的x的取值范围是(-1,0);
③对定义域内的任意x,f(x)满足f(-x)=-f(x);
④当0<a<1时,如果0<x1<x2<1,则f(x1)<f(x2);
其中正确结论的序号是______.(填上你认为正确的所有结论序号)
答案
1+x
1-x
>0
,得(x+1)(x-1)<0,解得:-1<x<1,∴f(x)的定义域是(-1,1),命题①正确;
∵a>1,由f(x)>0得,
1+x
1-x
>1
,即
1+x
1-x
-1>0
,x(x-1)<0,解得0<x<1,
∴当a>1时,使f(x)>0的x的取值范围是(0,1),命题②不正确;
f(-x)=loga
1-x
1+x
=-loga
1+x
1-x
=-f(x)
,∴命题③正确;
当0<a<1时,若0<x1<x2<1,则1-x1x2+x2-x1>1-x1x2+x1-x2>0,
f(x1)-f(x2)=loga
1+x1
1-x1
-loga
1+x2
1-x2

=loga(
1+x1
1-x1
1-x2
1+x2
)
=loga
1+x1-x2-x1x2
1+x2-x1-x1x2
>0.
∴f(x1)>f(x2)命题④不正确.
故答案为:①③.
核心考点
试题【关于函数f(x)=loga1+x1-x(a>0且a≠1)下列说法:①f(x)的定义域是(-1,1);②当a>1时,使f(x)>0的x的取值范围是(-1,0);③】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
下列命题:
①∃x0∈R,2x03x0
②若函数f(x)=(x-a)(x+2)为偶函数,则实数a的值为-2;
③圆x2+y2-2x=0上两点P,Q关于直线kx-y+2=0对称,则k=2;
④从1,2,3,4,5,6六个数中任取2个数,则取出的两个数是连续自然数的概率是
1
3

其中真命题是______(填上所有真命题的序号).
题型:不详难度:| 查看答案
假设a1,a2,a3,a4是一个等差数列,且满足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).给出以下命题:
①数列{bn}是等比数列;
②b2>4;
③b4>32;
④b2b4=256.
其中正确命题的个数是(  )
A.1B.2C.3D.4
题型:不详难度:| 查看答案
x0是函数f(x)=2sinx-πlnx(x∈(O,π))的零点,x1<x2,则
①x0∈(1,e);
②x0∈(e,π);
③f(x1)-f(x2)<0;
④f(x1)-f(x2)>0.
其中正确的命题为(  )
A.①③B.①④C.②③D.②④
题型:不详难度:| 查看答案
对于△ABC,有如下命题:
①若sin2A=sin2B,则△ABC为等腰三角形;
②若sinA=cosB,则△ABC为直角三角形;
③若sin2A+sin2B+cos2C<1,则△ABC为钝角三角形.
其中正确命题的序号是______.(把你认为所有正确的都填上)
题型:不详难度:| 查看答案
下列说法正确的是(  )
A.命题“∀x∈R,ex>0”的否定是“∃x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”⇔“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.