当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > (本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10...
题目
题型:不详难度:来源:
(本小题满分12分)
购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为
(Ⅰ)求一投保人在一年度内出险的概率
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。
答案
(Ⅰ)
(Ⅱ)15元
解析
各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为

(Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当,       2分




。························································································ 5分
(Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和。
支出         
盈利         
盈利的期望为 ,······································· 9分
知,




(元)。
故每位投保人应交纳的最低保费为15元。····················································· 12分
核心考点
试题【(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
题型:不详难度:| 查看答案
(本小题满分14分)

从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六组[40,50,[50,60,…[90,100]后得到如下频率分布直方图.
(Ⅰ)同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅱ)从上述40名学生中随机抽取2人,求这2人成绩都在[70,80的概率;
(Ⅲ)从上述40名学生中随机抽取2人,抽到的学生成绩在[40,60,记为0分,在[60,100],记为1分.用X表示抽取结束后的总记分,求X的分布列和数学期望.
题型:不详难度:| 查看答案
(本题满分13分)
如图,两个圆形转盘A,B,每个转盘阴影部分各占转盘面积的。某“幸运转盘积分活动”规定,当指针指到A,B转盘阴影部分时,分别赢得积分1000分和2000分。先转哪个转盘由参与者选择,若第一次赢得积分,可继续转为另一个转盘,此时活动结束,若第一次未赢得积分,则终止活动。
(1)记先转A转盘最终所得积分为随机量X,则X的取值分别是多少?
(2)如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由。
题型:不详难度:| 查看答案
(本小题满分12分)
班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记为这8位同学中数学和物理分数均为优秀的人数,求的分布列和数学期望;
②若这8位同学的数学、物理分数事实上对应下表:
学生编号
1
2
3
4
5
6
7
8
数学分数
60
65
70
75
80
85
90
95
物理分数
72
77
80
84
88
90
93
95
 
根据上表数据可知,变量之间具有较强的线性相关关系,求出的线性回归方程(系数精确到0.01).(参考公式:,其中;参考数据:
题型:不详难度:| 查看答案
一套重要资料锁在一个保险柜中,现有把钥匙依次分给名学生依次开柜,但其中只有一把真的可以打开柜门,平均来说打开柜门需要试开的次数为   (   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.