当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 为把中国武汉大学办成开放式大学,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者从事兼职导游工作,将这20志愿者的身高编成如下茎叶图(单位...
题目
题型:不详难度:来源:
为把中国武汉大学办成开放式大学,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者从事兼职导游工作,将这20志愿者的身高编成如下茎叶图(单位:厘米)若身高在175cm及其以上定义为“高个子”,否则定义为“非高个子”且只有文学院的“高个子”才能担任兼职导游。
(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数
(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少
(3)若从所有“高个子”中选3名志愿者。用表示所选志愿者中能担任“兼职导游”的人数,试写出的分布列,并求的数学期望
答案
(1)
(2)
(3)

0
1
2
3







解析
本试题是统计与概率的一道综合试题,利用茎叶图得到中位数,并求抽样的概率以及分布列和期望值的运算。
解:(1)根据志愿者的身高编茎叶图知文学院志愿者身高的中位数为:                                       ………2分
(2)由茎叶图可知,“高个子”有8人,“非高个子”有12人,
按照分层抽样抽取的5人中“高个子”为人,“非高个子”为人;
则至少有1人为高个子的概率=1-……6分
(3)由题可知:文学院的高个子只有3人,则的可能取值为0,1,2,3;

的分布列为:

0
1
2
3






=0+1+2+3
答:(略)
核心考点
试题【为把中国武汉大学办成开放式大学,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者从事兼职导游工作,将这20志愿者的身高编成如下茎叶图(单位】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
设集合,,分别从集合中随机取一个数.
(1)若向量,求向量的夹角为锐角的概率;
(2) 记点,则点落在直线上为事件,
求使事件的概率最大的.
题型:不详难度:| 查看答案
一个袋子中有大小相同的2个红球和3个黑球,从袋中随机地取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。
(1)若从袋子中一次取出3个球,求得4分的概率;
(2)若从袋子中每次摸出一个球,看清颜色后放回,连续摸2次,求所得分数的分布列及数学期望。
题型:不详难度:| 查看答案
有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为.
(1)求的概率;
(2)求的分布列和数学期望.
题型:不详难度:| 查看答案
某产品按行业生产标准分成个等级,等级系数依次为,其中为标准为标准,产品的等级系数越大表明产品的质量越好. 已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品.
(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率
题型:不详难度:| 查看答案
某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走①号公路堵车的概率为,不堵车的概率为;汽车走②号公路堵车的概率为,不堵车的概率为.由于客观原因甲、乙两辆汽车走①号公路,丙汽车走②号公路,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求汽车走公路②堵车的概率;
(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.