题目
题型:不详难度:来源:
取出一个黄球2分,取出蓝球得3分。
(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求
答案
2 | 3 | 4 | 5 | 6 | |
P |
(2)3:2:1
解析
(1)由已知得到:当两次摸到的球分别是红红时,此时;当两次摸到的球分别是黄黄,红蓝,蓝红时,此时;当两次摸到的球分别是红黄,黄红时,此时;当两次摸到的球分别是黄蓝,蓝黄时,此时;当两次摸到的球分别是蓝蓝时,此时;所以的分布列是:
2 | 3 | 4 | 5 | 6 | |
P |
1 | 2 | 3 | |
P |
点评:此题考查概率与统计,考查离散型随机变量的分布列及期望和方差的计算;;若服从正态分布,即;
核心考点
试题【设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分。(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
甲 86 77 92 72 78
乙 78 82 88 82 95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于分的次数为,求的分布列和数学期望..
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程(公里) | ||
纯电动乘用车 | 万元/辆 | 万元/辆 | 万元/辆 |
分组 | 频数 | 频率 |
合计 |
(1)求,,,的值;
(2)若从这辆纯电动乘用车中任选辆,求选到的辆车续驶里程都不低于公里的概率;
(3)若以频率作为概率,设为购买一辆纯电动乘用车获得的补贴,求的分布列和数学期望.
(1)求直方图中的值及甲班学生每天平均学习时间在区间的人数;
(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.
(1)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率;
(2)若第一局由乙先发球,以后每局由负方先发球.规定胜一局记2分,负一局记0分,记为比赛结束时甲的得分,求随机变量的分布列及数学期望.