当前位置:高中试题 > 数学试题 > 条件概率 > (10分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(Ⅰ)求方程有实根的概率;(Ⅱ)求的分布列和数学期望;(Ⅲ)求在先...
题目
题型:不详难度:来源:
(10分)设分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程
实根的个数(重根按一个计).
(Ⅰ)求方程有实根的概率;
(Ⅱ)求的分布列和数学期望;
(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
答案
(Ⅰ)
(Ⅱ)


(Ⅲ)
解析
本试题主要考查了古典概型概率的计算,以及分布列和数学期望的求解的综合运用。
(1)中理解本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6=36,那么借助于使方程有实根△=b2-4c≥0,得到事件A发生的基本事件数,得到概率值。
(2)利用ξ=0,1,2的可能取值,分别得到各个取值的概率值,然后写出分布列和数学期望值
(3)分析在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,这是一个条件概率,利用条件概率公式得到结论。
解:(I)由题意知,本题是一个等可能事件的概率,
试验发生包含的基本事件总数为6×6=36,
满足条件的事件是使方程有实根,则△=b2-4c≥0,即.
下面针对于c的取值进行讨论
当c=1时,b=2,3,4,5,6; 当c=2时,b=3,4,5,6;
当c=3时,b=4,5,6;       当c=4时,b=4,5,6;
当c=5时,b=5,6;          当c=6时,b=5,6,
目标事件个数为5+4+3+3+2+2=19,
因此方程有实根的概率为
(II)由题意知用随机变量ξ表示方程实根的个数得到
ξ=0,1,2   根据第一问做出的结果得到

∴ξ的分布列为

∴ξ的数学期望  
(III)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,
这是一个条件概率,
记“先后两次出现的点数中有5”为事件M,
“方程有实根”为事件N,
则,    ∴
核心考点
试题【(10分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(Ⅰ)求方程有实根的概率;(Ⅱ)求的分布列和数学期望;(Ⅲ)求在先】;主要考察你对条件概率等知识点的理解。[详细]
举一反三
从1,2,3,4,5中不放回地依次取2个数,事件A=“第1次取到的是奇数”,B=“第2次取到的是奇数”,则P(B|A)=(  )
A、        B、          C、         D、
题型:不详难度:| 查看答案
从只有3张中奖的10张彩票中不放回随机逐张抽取,设X表示直至抽到中奖彩票时的次数,则( )
A.B.C.D.

题型:不详难度:| 查看答案
将号码分别为1、2、…、9的九个小球放入一个袋中, 这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,其号码为a放回后,乙从此袋中再摸出一个球,其号码为b.则使不等式a -2b +10>0成立的事件发生的概率等于(  )
A.B.C.D.

题型:不详难度:| 查看答案
同时抛掷三颗骰子一次,设“三个点数都不相同”,“至少有一个6点”则为(    )
A.B.C.D.

题型:不详难度:| 查看答案
在一个盒子里放有6张卡片,上面标有数字1,2,3,4,5,6,现在从盒子里每次任意取出一张卡片,取两片.
(I)若每次取出后不再放回,求取到的两张卡片上数字之积大于12的概率;
(II)在每次取出后再放回和每次取出后不再放回这两种取法中,得到的两张卡片上的最大数字的期望值是否相等?请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.