当前位置:高中试题 > 数学试题 > 两个互斥事件的概率加法公式 > 某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别...
题目
题型:花都区模拟难度:来源:
某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是
3
4
1
2
1
4
,且各阶段通过与否相互独立.
(Ⅰ)求该选手在复赛阶段被淘汰的概率;
(Ⅱ)设该选手在竞赛中回答问题的个数为ξ,求ξ的数学期望和方差.
答案
(Ⅰ)该选手在复赛阶段被淘汰包括通过初赛,不能通过复赛,这两个事件是相互独立的,
记“该选手通过初赛”为事件A,“该选手通过复赛”为事件B,
“该选手通过决赛”为事件C,
P(A)=
3
4
P(B)=
1
2
P(C)=
1
4

根据相互独立事件的概率得到
该选手在复赛阶段被淘汰的概率是P=P(A
.
B
)=P(A)P(
.
B
)=
3
4
×(1-
1
2
)=
3
8

(Ⅱ)该选手在竞赛中回答问题的个数为ξ,则ξ可能的取值为1,2,3
P(ξ=1)=P(
.
A
)=1-
3
4
=
1
4

P(ξ=2)=P(A
.
B
)=P(A)P(
.
B
)=
3
4
×(1-
1
2
)=
3
8

P(ξ=3)=P(AB)=P(A)P(B)=
3
4
×
1
2
=
3
8

∴ξ的数学期望Eξ=1×
1
4
+2×
3
8
+3×
3
8
=
17
8

ξ的方差Dξ=(1-
17
8
)2×
1
4
+(2-
17
8
)2×
3
8
+(3-
17
8
)2×
3
8
=
39
64
核心考点
试题【某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别】;主要考察你对两个互斥事件的概率加法公式等知识点的理解。[详细]
举一反三
一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内.
(1)恰有一套设备能正常工作的概率;
(2)能进行通讯的概率.
题型:不详难度:| 查看答案
假设每一架飞机引擎在飞行中故障率为1-P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P而言,4引擎飞机比2引擎的飞机更为安全?
题型:不详难度:| 查看答案
CBA篮球总决赛采取五局三胜制,即有一队胜三场比赛就结束,预计本次决赛的两队实力相当,且每场比赛门票收入100万元、问:
(1)在本次比赛中,门票总收入是300万元的概率是多少?
(2)在本次比赛中,门票总收入不低于400万元的概率是多少?
题型:不详难度:| 查看答案
某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励.已知此技术难题在攻关期限内被甲小组攻克的概率为
2
3
,被乙小组攻克的概率为
3
4

(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及数学期望Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数f(x)=|η-
1
2
|x
在定义域内单调递增”为事件C,求事件C发生的概率.
题型:台州一模难度:| 查看答案
甲、乙两人进行射击训练,命中率分别为
2
3
与P,且乙射击2次均未命中的概率为
1
16

(I)求乙射击的命中率;
(Ⅱ)若甲射击2次,乙射击1次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
题型:临沂一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.