当前位置:高中试题 > 数学试题 > 两个互斥事件的概率加法公式 > 甲、乙两人进行射击训练,命中率分别为23与P,且乙射击2次均未命中的概率为116,(I)求乙射击的命中率;(Ⅱ)若甲射击2次,乙射击1次,两人共命中的次数记为ξ...
题目
题型:临沂一模难度:来源:
甲、乙两人进行射击训练,命中率分别为
2
3
与P,且乙射击2次均未命中的概率为
1
16

(I)求乙射击的命中率;
(Ⅱ)若甲射击2次,乙射击1次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
答案
(I)设“甲射击一次命中”为事件A,“乙射击一次命中”为事件B
由题意得(1-P(B))2=(1-P)2=
1
16
┉┉┉┉┉┉┉┉┉┉(4分)
解得P=
3
4
P=
5
4
(舍去),┉┉┉┉┉┉┉┉┉┉(5分)
故乙射击的命中率为
3
4
.┉┉┉┉┉┉┉┉┉┉(6分)
(II)由题意和(I)知P(A)=
2
3
,P(
.
A
)=
1
3
,P(B)=
3
4
,P(
.
B
)=
1
4

ξ可能的取值为0,1,2,3,
P(ξ=0)=P(
.
A
)P(
.
A
)P(
.
B
)=
1
3
×
1
3
×
1
4
=
1
36
┉┉┉┉┉┉┉┉┉┉(7分)P(ξ=1)=2P(A)P(
.
A
)P(
.
B
)+P(
.
A
)P(
.
A
)P(B)=2×
2
3
×
1
3
×
1
4
+
1
3
×
1
3
×
3
4
=
7
36
.(8分)P(ξ=3)=P(A)P(A)P(B)=
2
3
×
2
3
×
3
4
=
12
36
┉┉┉┉┉┉┉┉┉┉(9分)P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-
1
36
-
7
36
-
12
36
=
16
36
┉┉┉(10分)
故ξ的分布列为
核心考点
试题【甲、乙两人进行射击训练,命中率分别为23与P,且乙射击2次均未命中的概率为116,(I)求乙射击的命中率;(Ⅱ)若甲射击2次,乙射击1次,两人共命中的次数记为ξ】;主要考察你对两个互斥事件的概率加法公式等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:山东难度:| 查看答案
题型:浙江难度:| 查看答案
题型:广东难度:| 查看答案
题型:江西难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
ξ0123
P
1
36
7
36
16
36
12
36
某射手射中10环、9环、8环的概率分别为0.24,0.28,0.19,那么,在一次射击训练中,该射手射击一次不够8环的概率是______.
从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为
4
v
,每位男同学能通过测验的概率均为
3
v
.试求:
(I)选出的3位同学中,至少有一位男同学的概率;
(II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
某地区有5个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.
(1)求5个工厂均选择星期日停电的概率;
(2)求至少有两个工厂选择同一天停电的概率.
一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是(  )
A.0.1536B.0.1808C.0.5632D.0.9728
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.