甲、乙两人独立的解决一个问题,甲能解决这个问题的概率为0.6,乙能解决这个问题的概率为0.7,那么甲乙两人中至少有一人解决这个问题的概率是______. |
由题意甲、乙两人独立的解决一个问题,其间没有影响, 事件“甲乙两人中至少有一人解决这个问题”的对立事件是“甲乙两人都没有解决这个问题” 甲能解决这个问题的概率为0.6,乙能解决这个问题的概率为0.7, 事件“甲乙两人都没有解决这个问题”的概率是(1-0.6)(1-0.7)=0.12 故事件“甲乙两人中至少有一人解决这个问题”的概率是1-0.12=0.88 故答案为0.88 |
核心考点
试题【甲、乙两人独立的解决一个问题,甲能解决这个问题的概率为0.6,乙能解决这个问题的概率为0.7,那么甲乙两人中至少有一人解决这个问题的概率是______.】;主要考察你对
两个互斥事件的概率加法公式等知识点的理解。
[详细]
举一反三
某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列的两个动作的得分是相互独立的.根据赛前训练的统计数据,某运动员完成甲系列和乙系列动作的情况如下表: 表1:甲系列
动作 | K动作 | D动作 | 得分 | 100 | 80 | 40 | 1- | 概率 | | | | | 一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品. (1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列和数学期望. | 某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的. (1)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是、、,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率; (2)若下午某一时段每位教师需要使用电脑的概率都是,求在这一时段该办公室电脑使用的平均台数和无法满足需求的概率. | (理)某工厂的一位产品检验员在检验产品时,可能把正品错误地检验为次品,同样也会把次品错误地检验为正品.已知他把正品检验为次品的概率是0.02,把次品检验为正品的概率为0.01.现有3件正品和1件次品,则该检验员将这4件产品全部检验正确的概率是______(结果保留三位小数). | 某射手向一个气球射击,假定各次射击是相互独立的,且每次射击击破气球的概率均为. (I)若该射手共射击三次,求第三次射击才将球击破的概率; (II)给出两种积分方案: 方案甲:提供三次射击机会和一张700点的积分卡,若未击中的次数为ξ,则扣除积分128ξ点. 方案乙:提供四次射击机会和一张1000点的积分卡,若未击中的次数为ξ,则扣除积分256ξ点. 在执行上述两种方案时规定:若将球击破,则射击停止;若未击破,则继续射击直至用完规定的射击次数. 问:该射手应选择哪种方案才能使积分卡剩余点数最多,并说明理由. |
|