当前位置:高中试题 > 数学试题 > 随机事件的概率 > 甲、乙两人各射击一次,击中目标的概率分别是和。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。(Ⅰ)求甲射击4次,至少1次未...
题目
题型:不详难度:来源:
甲、乙两人各射击一次,击中目标的概率分别是。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。
(Ⅰ)求甲射击4次,至少1次未击中目标的概率;
(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(Ⅲ)假设两人连续两次未击中目标,则停止射击。问:乙恰好射击5次后,被中止射击的概率是多少?
答案
(Ⅰ)(Ⅱ)(Ⅲ)
解析
本题是一道概率综合运用问题,第一问中求“至少有一次末击中问题”可从反面求其概率问题;第二问中先求出甲恰有两次末击中目标的概率,乙恰有3次末击中目标的概率,再利用独立事件发生的概率公式求解.第三问设出相关事件,利用独立事件发生的概率公式求解,并注意利用对立、互斥事件发生的概率公式.
(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A1
由题意,射击4次,相当于4次独立重复试验,
故P(A1)="1-" P()=1-=
答:甲射击4次,至少1次未击中目标的概率为;……4分
(Ⅱ) 记“甲射击4次,恰好击中目标2次”为事件A2
“乙射击4次,恰好击中目标3次”为事件B2,则


由于甲、乙射击相互独立,

、答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为;…………8分
(Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A3
“乙第i次射击未击中” 为事件Di,(i=1,2,3,4,5),则A3=D5D4,且P(Di)=,由于各事件相互独立,故P(A3)= P(D5)P(D4)P(
=×××(1-×)=
答:乙恰好射击5次后,被中止射击的概率是。…………12分
或者:分类处理
1. 前三次都击中目标,第四、五次连续两次都未击中目标
2. 第一次未击中目标,第二、三次击中,
3. 第一次击中,第二次未击中,第三次击中,
点评:本题主要考查相互独立事件同时发生或互斥事件发生的概率的计算方法,考查运用概率知识解决实际问题的能力.
核心考点
试题【甲、乙两人各射击一次,击中目标的概率分别是和。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。(Ⅰ)求甲射击4次,至少1次未】;主要考察你对随机事件的概率等知识点的理解。[详细]
举一反三
甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:
(1)人都射中目标的概率;
(2)人中恰有人射中目标的概率;
(3)人至少有人射中目标的概率;
(4)人至多有人射中目标的概率?
题型:不详难度:| 查看答案
已知连续型随机变量ζ的概率密度函数f(x)=
(1)求常数a的值,并画出ζ的概率密度曲线;
(2)求P(1<ζ) 
题型:不详难度:| 查看答案

(Ⅰ)如果三段的长度均为整数,求能构成三角形的概率;
(Ⅱ)如果把铁丝截成2,2,3的三段放入一个盒子中,然后有放回地摸4次,设摸到长度为2的次数为,求
(Ⅲ)如果截成任意长度的三段,求能构成三角形的概率.
题型:不详难度:| 查看答案

在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”.某考生已确定有4道题答案是正确的,其余题中:有两道只能分别判断2个选项是错误的,有一道仅能判断1个选项是错误的,还有一道因不理解题意只好乱猜,求:
(1)该考生得40分的概率;
(2)该考生得多少分的可能性最大?
题型:不详难度:| 查看答案
已知函数,其中,则使得
上有解的概率为()
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.