当前位置:高中试题 > 数学试题 > 求轨迹方程 > 四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是...
题目
题型:不详难度:来源:
四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是(  )
A.圆的一部分B.椭圆的一部分
C.球的一部分D.抛物线的一部分
答案
在平面PAB内,
以AB所在直线为x轴,AB的中垂线为y轴,建立平面直角坐标系.
设点P(x,y),则由题意可得 A(-3,0),B(3,0).
∵AD⊥α,BC⊥α,AD=4,BC=8,AB=6,∠APD=∠CPB,
∴Rt△APDRt△CPB,
AP
BP
=
AD
BC
=
4
8
=
1
2

即 BP2=4AP2,故有(x-3)2+y2=4[(x+3)2+y2],
整理得:(x+5)2+y2=16,表示一个圆.
由于点P不能在直线AB上(否则,不能构成四棱锥),
故点P的轨迹是圆的一部分,
故选A.
核心考点
试题【四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是】;主要考察你对求轨迹方程等知识点的理解。[详细]
举一反三
在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆
题型:不详难度:| 查看答案
已知F1(-5,0),F2(5,0),动点P(x,y)满足|PF1|-|PF2|=10,则动点P的轨迹方程是______.
题型:不详难度:| 查看答案
已知动圆过定点Q(1,0),且与定直线x=-1相切.
(1)求此动圆圆心P的轨迹C的方程;
(2)若过点M(4,0)的直线l与曲线C分别相交于A,B两点,若2


AM
=


MB
,求直线l的方程.
题型:不详难度:| 查看答案
如图,AB为半圆的直径,P为半圆上一点,|AB|=10,∠PAB=a,且sina=
4
5
,建立适当的坐标系.
(1)求A、B为焦点且过P点的椭圆的标准方程.
(2)动圆M过点A,且与以B为圆心,以2


5
为半径的圆相外切,求动圆圆心M的轨迹方程.
题型:不详难度:| 查看答案
已知动圆过定点(1,0),且与直线x=-1相切.
(1)求动圆的圆心轨迹C的方程;
(2)是否存在直线l,使l过点(0,1),并与轨迹C交于P,Q两点,且满足


OP


OQ
=0
?若存在,求出直线l的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.