当前位置:高中试题 > 数学试题 > 求轨迹方程 > 已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2).(1)求证:曲线C...
题目
题型:不详难度:来源:
已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2).
(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程.
答案
(1)证明:由题意知,直线l的方程为
x
a
+
y
b
=1

即bx+ay-ab=0.
曲线C的方程配方得(x-1)2+(y-1)2=1,
∴直线l与圆C相切的充要条件是1=
|a+b-ab|


a2+b2

整理得ab-2a-2b+2=0,
即(a-2)(b-2)=2;
(2)设AB的中点为M(x,y),
则由中点坐标公式得:a=2x,b=2y,代入(a-2)(b-2)=2,得
(2x-2)(2y-2)=2,
即 (x-1)(y-1)=
1
2
(其中x>1,y>1),
∴线段AB中点的轨迹方程为:(x-1)(y-1)=
1
2
(其中x>1,y>1).
核心考点
试题【已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2).(1)求证:曲线C】;主要考察你对求轨迹方程等知识点的理解。[详细]
举一反三
已知一个圆的圆心为坐标原点,半径为2.从这个圆上任意一点P向x轴作垂线段PP′,求线段PP′中点M的轨迹.
题型:不详难度:| 查看答案
圆C:x2+y2-2x-2y-7=0,设P是该圆的过点(3,3)的弦的中点,则动点P的轨迹方程是______.
题型:不详难度:| 查看答案
已知垂直竖在水平地面上相距20米的两根旗杆的高分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是(  )
A.椭圆B.圆C.双曲线D.抛物线
题型:不详难度:| 查看答案
如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足


AM
=2


AP


NP


AM
=0
,则点N的轨迹方程是______.
题型:不详难度:| 查看答案
已知过点M(1,0)的直线交椭圆C:x2+3y2=6于A,B两点.
(1)求弦AB中点的轨迹方程;
(2)若F为椭圆C的左焦点,求△ABF面积的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.