当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 抛物线C的顶点在原点,焦点F与双曲线x23-y26=1的右焦点重合,过点P(2,0)且斜率为1的直线l与抛物线C交于A、B两点.(1)求弦长|AB|;(2)求弦...
题目
题型:不详难度:来源:
抛物线C的顶点在原点,焦点F与双曲线
x2
3
-
y2
6
=1的右焦点重合,过点P(2,0)且斜率为1的直线l与抛物线C交于A、B两点.
(1)求弦长|AB|;
(2)求弦AB中点到抛物线准线的距离.
答案
(1)由题意可得双曲线的右焦点(3,0),故F(3,0)
∴抛物线的方程为y2=12x,过点P得直线方程为y=x-2
联立方程





y=x-2
y2=12x
可得x2-16x+4=0设A(x1,y1)B(x2,y2
则x1+x2=16,x1x2=4
AB=


2[(x1+x2)2-4x1x2 ]
=


2(256-16)
=4


30

(2)设AB得中点为M(x0,y0
分别过点AMB做准线的垂线,垂足分别为A′,M′,B′,
则由梯形得性质可得,MM=
1
2
(AA+BB)
=(x1+3+x2+3)×
1
2
=
1
2
× 22=11
核心考点
试题【抛物线C的顶点在原点,焦点F与双曲线x23-y26=1的右焦点重合,过点P(2,0)且斜率为1的直线l与抛物线C交于A、B两点.(1)求弦长|AB|;(2)求弦】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知双曲线
x2
a2
-
y2
9
=1
中心在原点,右焦点与抛物线y2=16x的焦点重合,则该双曲线的离心率为______.
题型:惠州模拟难度:| 查看答案
已知双曲线x2-
y2
2
=1
,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?如果能,求出直线l的方程;如果不能,请说明理由.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆焦点坐标;
(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM,kPN,当kPMkPN=-
1
4
时,求椭圆的方程.
题型:济南一模难度:| 查看答案
已知双曲线
x2
a2
-
y2
b2
=1
的离心率为2,它的一个焦点与抛物线y2=8x的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为______.
题型:不详难度:| 查看答案
直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则k的值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.