当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知直线AB与抛物线y2=2px(p>0)交于两点A(x1,y1),B(x2,y2),且y1y2=-p2.   求证:直线AB经过抛物线的焦点....
题目
题型:不详难度:来源:
已知直线AB与抛物线y2=2px(p>0)交于两点A(x1,y1),B(x2,y2),且y1y2=-p2.   求证:直线AB经过抛物线的焦点.
答案
证明:设直线AB的方程为:y=kx+b,





y=kx+b
y2=2px
,得(kx+b)2=2px,
整理,得k2x2+(2bk-2p)x+b2=0,
∵A(x1,y1),B(x2,y2),
x1x2=
b2
k2

∵y2=2px(p>0),y1y2=-p2
x1x2 =
y12
2p
y22
2p
=
p4
4p2
=
b2
k2

∴k=
2b
p
,或k=-
2b
p

∴y=
2b
p
x+b
(舍)或y=-
2b
p
x+b

当y=0时,x=
p
2

故直线AB经过抛物线的焦点F(
p
2
,0).
核心考点
试题【已知直线AB与抛物线y2=2px(p>0)交于两点A(x1,y1),B(x2,y2),且y1y2=-p2.   求证:直线AB经过抛物线的焦点.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知直线l:y=kx-1与双曲线C:x2-y2=4
(1)如果l与C只有一个公共点,求k的值;
(2)如果l与C的左右两支分别相交于A(x1,y1),B(x2,y2)两点,且|x1-x2|=2


5
,求k的值.
题型:不详难度:| 查看答案
已知抛物线过点A(-1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程(  )
A.
x2
3
+
y2
4
=1(y≠0)
B.
x2
4
+
y2
3
=1(y≠0)
C.
x2
3
-
y2
4
=1(y≠0)
D.
x2
4
-
y2
3
=1(y≠0)
题型:不详难度:| 查看答案
y2=2px(p>0)的焦点与椭圆
x2
6
+
y2
2
=1的右焦点重合,则抛物线准线方程为
(  )
A.x=-1B.x=-2C.x=-
1
2
D.x=-4
题型:不详难度:| 查看答案
选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为





x=


3
cosa
y=sina

(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.
题型:不详难度:| 查看答案
双曲线方程为x2-
y2
4
=1,过P(1,0)的直线L与双曲线只有一个公共点,则L的条数共有______条.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.