当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 直线l过x轴上的点M,l交椭圆x28+y24=1于A,B两点,O是坐标原点.(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;(2)若M的坐标为(1...
题目
题型:不详难度:来源:
直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.
答案
(1)k不存在时,显然不成立;
令直线l:y=k(x-2),A(x1,y1),B(x2,y2),





x2+2y2=8
y=k(x-2)
,得(1+2k2)x2-8k2x+8k2-8=0,
x1+x2=
8k2
1+2k2
x1x2=
8(k2-1)
1+2k2

由OA⊥OB,得x1x2+y1y2=0,即x1x2+k2(x1-2)(x2-2)=0
(1+k2)x1x2-2k2(x1+x2)+4k2=0
韦达定理代入,得(1+k2)•
8(k2-1)
1+2k2
-2k2
8k2
1+2k2
+4k2=0,
k=±


2

∴直线l:y=±


2
(x-2)

(2)令AB中点(x0,y0),由A(x1,y1),B(x2,y2),得





x21
8
+
y21
4
=1,(1)
x22
8
+
y22
4
=1,(2)

(1)-(2),得
(x1-x2)(x1+x2)
2
+(y1-y2)(y1+y2)=0

x0
2
+kABy0=0
,即
x0
2
-
1
k
y0=0

又因为AB中点(x0,y0)在直线l上,所以y0=k(x0-2)②
由①②得x0=2,y0=k,
∵中点(x0,y0)在椭圆内,
x20
8
+
y20
4
<1
,即-


2
<k<


2
,且k≠0.
核心考点
试题【直线l过x轴上的点M,l交椭圆x28+y24=1于A,B两点,O是坐标原点.(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;(2)若M的坐标为(1】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若


AM
=
1
2


MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
题型:不详难度:| 查看答案
已知点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(1)求P的轨迹C的方程;
(2)是否存在过点N(1,0)的直线l与曲线C相交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出平行四边形OAQB的面积;若不存在,说明理由.
题型:不详难度:| 查看答案
已知双曲线C:x2-
y2
2
=1
,过点P(-1,-2)的直线交C于A,B两点,且点P为线段AB的中点.
(1)求直线AB的方程;
(2)求弦长|AB|的值.
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,


3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|-|BF2|=


6
2
,求直线AF的斜率.
题型:不详难度:| 查看答案
如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)d的离心率为


2
2
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(


2
+1
).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.