当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).(1)F为抛物线C的焦点,若|AM|=54|AF...
题目
题型:不详难度:来源:
已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).
(1)F为抛物线C的焦点,若|AM|=
5
4
|AF|,求k的值;
(2)如果抛物线C上总存在点Q,使得QA⊥QB,试求k的取值范围.
答案
(1)法一:由已知M(-1,0)(1分)
设A(x1,y1),则|AM|=


1+k2
|x1+1|
,(1分)
|AF|=


(x1-1)2+
y21

=


(x1-1)2+4x1

=|x1+1|,(1分)
由4|AM|=5|AF|得,4


1+k2
=5,
解得k=±
3
4
(2分)
法二:记A点到准线距离为d,直线l的倾斜角为a,
由抛物线的定义知|AM|=
5
4
d,(2分)
∴cosa=±
d
|AM|
4
5

∴k=tana=±
3
4
(3分)
(2)设Q(x0,y0),A(x1,y1),B(x2,y2





y2=4x
y=k(x+1)
得ky2-4y+4k=0,(1分)
首先由





k≠0
16-16k2>0
得-1<k<1且k≠0
kQA=
y0-y1
x0-x1
=
y0-y1
y20
4
-
y21
4
=
4
y0+y1

同理kQB=
4
y0+y2
(2分)
由QA⊥QB得
4
y0+y1
4
y0+y2
=-1
,(2分)
即:y02+y0(y1+y2)+y1y2=-16,
y20
+
4
k
y0+20=0
,(2分)
△=(
4
k
)
2
-80≥0,得-


5
5
≤k≤


5
5
且k≠0,
由-1<k<1且k≠0得,
k的取值范围为[-


5
5
,0)∪(0,


5
5
](3分)
核心考点
试题【已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).(1)F为抛物线C的焦点,若|AM|=54|AF】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1
(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以双曲线C2的另一焦点F1为圆心的圆M与直线y=


3
x
相切,圆N:(x-2)2+y2=1.过点P(1,


3
)作互相垂直且分别与圆M、圆N相交的直线l1和l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,问:
s
t
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
题型:不详难度:| 查看答案
直线l:y=k(x-


2
)
与双曲线x2-y2=1仅有一个公共点,则实数k的值为(  )
A.1B.-1C.1或-1D.1或-1或0
题型:不详难度:| 查看答案
已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+2


2
=0的距离为3.
(1)求椭圆方程;
(2)试问是否存在斜率为k(k≠0)的直线l,使l与椭圆M有两个不同的交点B、C,且|AB|=|AC|?若存在,求出k的范围,若不存在,说明理由.
题型:不详难度:| 查看答案
线段PQ是椭圆
x2
4
+
y2
3
=1
过M(1,0)的一动弦,且直线PQ与直线x=4交于点S,则
|SM|
|SP|
+
|SM|
|SQ|
=______.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.