当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 在平面直角坐标系中,N为圆C:(x+1)2+y2=16上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且MP•DN=0.(Ⅰ)求动点P表示的曲线...
题目
题型:不详难度:来源:
在平面直角坐标系中,N为圆C:(x+1)2+y2=16上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且


MP


DN
=0

(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为A,B,当动点P与A,B不重合时,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值.
答案
(Ⅰ)由点M是DN的中点,


MP


DN
=0
,可知PM垂直平分DN.
所以|PN|=|PD|,
又|PC|+|PN|=|CN|,所以|PC|+|PD|=4.
由椭圆定义知,点P的轨迹是以C,D为焦点的椭圆.----------------------(4分)
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

又2a=4,2c=2,可得a2=4,b2=3.
所以动点P表示的曲线E的方程为
x2
4
+
y2
3
=1
.----------------------(6分)
(Ⅱ)证明:易知A(-2,0),B(2,0).
设P(x0,y0)(y0≠0),则
x20
4
+
y20
3
=1
,即
y20
=3(1-
x20
4
)

k1=
y0
x0+2
k2=
y0
x0-2
,----------------------(8分)
k1k2=
y20
x20
-4
=
3(1-
x20
4
)
x20
-4
=
-
3
4
(
x20
-4)
x20
-4
=-
3
4

∴k1•k2为定值-
3
4
.-----------------------------------12
核心考点
试题【在平面直角坐标系中,N为圆C:(x+1)2+y2=16上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且MP•DN=0.(Ⅰ)求动点P表示的曲线】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
如图,已知椭圆
x2
a2
+
y2
b2
(a>b>0)的离心率e=


6
3
,短轴长为2.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
题型:不详难度:| 查看答案
已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点F的距离为
17
4

(1)求P与m的值;
(2)若直线l过焦点F交抛物线于P,Q两点,且|PQ|=5,求直线l的方程.
题型:不详难度:| 查看答案
已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与直线x+y-1=0相交于A、B两点.
(1)若椭圆的半焦距c=


3
,直线x=±a与y=±b围成的矩形ABCD的面积为8,求椭圆的方程;
(2)若O(


OA


OB
=0
为坐标原点),求证:
1
a2
+
1
b2
=2

(3)在(2)的条件下,若椭圆的离心率e满足


3
3
≤e≤


2
2
,求椭圆长轴长的取值范围.
题型:不详难度:| 查看答案
已知直线与椭圆
x2
9
+
y2
4
=1
交于A,B两点,设线段AB的中点为P,若直线的斜率为k1,直线OP的斜率为k2,则k1k2等于______.
题型:不详难度:| 查看答案
已知:椭圆
x2
a2
+
y2
b2
=1
(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为
π
6
,原点到该直线的距离为


3
2

(1)求椭圆的方程;
(2)斜率大于零的直线过D(-1,0)与椭圆交于E,F两点,若


ED
=2


DF
,求直线EF的方程;
(3)是否存在实数k,直线y=kx+2交椭圆于P,Q两点,以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.