当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > (1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.(2)已知圆M的...
题目
题型:不详难度:来源:
(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.
(2)已知圆M的方程为:(x+1)2+y2=(2a)2(a>0,且a1),定点N(1,0),动点P在圆M上运动,线段PN的垂直平分线与直线MP相交于点Q,求点Q轨迹方程.
答案
(1)设点C(x,y),由AC,BC所在直线的斜率之积等于m(m≠0),
得:
y-1
x
y+1
x
=m
,化简得:-mx2+y2=1(x≠0).
当m<-1时,轨迹E表示焦点在y轴上的椭圆,且除去(0,1),(0,-1)两点;
当m=-1时,轨迹E表示以(0,0)为圆心,半径是1的圆,且除去(0,1),(0,-1)两点;
当-1<m<0时,轨迹E表示焦点在x轴上的椭圆,且除去(0,1),(0,-1)两点;
当m>0时,轨迹E表示焦点在y轴上的双曲线,且除去(0,1),(0,-1)两点.
(2)连结QN,则|QN|=|QP|,
当a>1时,则点N在圆内,有|QN|+|QM|=|QP|+|QM|=|MP|=2a>|MN|,
∴点Q的轨迹是以M,N为焦点的椭圆,方程为:
x2
a2
+
y2
a2-1
=1

当0<a<1时,则点N在圆外,有|QN|-|QM|=|QP|-|QM|=|MP|=2a<|MN|,
∴点Q的轨迹是以M,N为焦点的双曲线,方程为:
x2
a2
-
y2
1-a2
=1
核心考点
试题【(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.(2)已知圆M的】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=


3
2
,A、B是椭圆的左、右顶点,P是椭圆上不同于A、B的一点,直线PA、PB斜倾角分别为α、β,则
cos(α-β)
cos(α+β)
=______.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右两焦点分别为F1,F2,p是椭圆上一点,且在x轴上方,PF2⊥F1F2,PF2=λPF1,λ∈[
1
3
1
2
].
(1)求椭圆的离心率e的取值范围;
(2)当e取最大值时,过F1,F2,P的圆Q的截y轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线l上任一点A引圆Q的两条切线,切点分别为M,N.试探究直线MN是否过定点?若过定点,请求出该定点;否则,请说明理由.
题型:不详难度:| 查看答案
如果椭圆
x2
36
+
y2
9
=1
的弦AB被点M(x0,y0)平分,设直线AB的斜率为k1,直线OM(O为坐标原点)的斜率为k2,则k1•k2=(  )
A.4B.
1
4
C.-1D.-
1
4
题型:不详难度:| 查看答案
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦点分别为F1、F2,过F1作直线交椭圆于P、Q两点,△F2PQ的周长为4


3

(1)若椭圆的离心率e=


3
3
,求椭圆的方程;
(2)若M为椭圆上一点,


MF1


MF2
=1,求△MF1F2的面积最大时的椭圆方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.