当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为12(1)求椭圆的标准方程(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB...
题目
题型:不详难度:来源:
已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为
1
2

(1)求椭圆的标准方程
(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB|.
答案
(1)∵焦点在x轴上的椭圆焦距为2,离心率为
1
2

∴c=1,
c
a
=
1
2

∴a=2,
∴b2=a2-c2=3,
∴所求椭圆方程为
x2
4
+
y2
3
=1

(2)设A(x1,y1),B(x2,y2),则
∵直线l过点(1,2)且倾斜角为45°,
∴直线l的方程为y=x+1,
代入椭圆方程,消去y可得7x2+8x-8=0,
∴x1+x2=-
8
7
,x1x2=-
8
7

∴|x1-x2|=


(
8
7
)2+4•
8
7
=
12


2
7

因此,|AB|=


2
•|x1-x2|=
24
7
核心考点
试题【已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为12(1)求椭圆的标准方程(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
如图,已知圆C1的方程为(x-2)2+(y-1)2=
20
3
,椭圆C2的方程为
x2
a2
+
y2
b2
=1
(a>b>0),C2的离心率为


2
2
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.
题型:不详难度:| 查看答案
已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为(  )
A.18B.24C.36D.48
题型:不详难度:| 查看答案
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,
3
2
)在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为
12


2
7
,求直线l的方程.
题型:不详难度:| 查看答案
已知椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)的右顶点为P(1,0),过C1的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设抛物线C2:y=x2+h(h∈R)的焦点为F,过F点的直线l交抛物线与A、B两点,过A、B两点分别作抛物线C2的切线交于Q点,且Q点在椭圆C1上,求△ABQ面积的最值,并求出取得最值时的抛物线C2的方程.
题型:不详难度:| 查看答案
设椭圆方程为x2+
y2
4
=1
,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足


OP
=
1
2
(


OA
+


OB
)
,点N的坐标为(
1
2
1
2
)
,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)|


NP
|
的最小值与最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.