当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 我国于2010年10月1日成功发射嫦娥二号卫星,卫星飞行约两小时到达月球,到达月球以后,经过几次变轨将绕月球以椭圆型轨道飞行,其轨迹是以月球的月心为一焦点的椭圆...
题目
题型:不详难度:来源:
我国于2010年10月1日成功发射嫦娥二号卫星,卫星飞行约两小时到达月球,到达月球以后,经过几次变轨将绕月球以椭圆型轨道飞行,其轨迹是以月球的月心为一焦点的椭圆。若第一次变轨前卫星的近月点到月心的距离为m,远月点到月心的距离为n,第二次变轨后两距离分别为2m,2n.则第一次变轨前的椭圆离心率比第二次变轨后的椭圆离心率 (   )
A.变大B.变小C.不变D.与的大小有关

答案
C
解析
将月球的球心作为焦点,再由“卫星近月点到月心的距离为m,远月点到月心的距离为n”和“二次变轨后两距离分别为2m,2n”,可得到a+c,a-c,分别求得a,c,再求离心率后比较即得.
解:设长半轴为a,半焦距为c
第一次变轨前:
根据题意:

∴e=
同理,第二次变轨后,椭圆离心率e=
则第一次变轨前的椭圆离心率比第二次变轨后的椭圆离心率不变
故选C.
核心考点
试题【我国于2010年10月1日成功发射嫦娥二号卫星,卫星飞行约两小时到达月球,到达月球以后,经过几次变轨将绕月球以椭圆型轨道飞行,其轨迹是以月球的月心为一焦点的椭圆】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆的中心在坐标原点,焦点在x轴上,椭圆上点P到两焦点的距离之和是12,则椭圆的标准方程是              
题型:不详难度:| 查看答案
椭圆的长轴长为4,焦距为2,F1、F2分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点
(1)求椭圆的标准方程和动点的轨迹的方程。
(2)过椭圆的右焦点作斜率为1的直线交椭圆于A、B两点,求的面积。
(3)设轨迹轴交于点,不同的两点在轨迹上,
满足求证:直线恒过轴上的定点。
题型:不详难度:| 查看答案
已知双曲线,则p的值为(  )                   
A.-2B.-4C.2D.4

题型:不详难度:| 查看答案
已知是实数,是抛物线的焦点,直线
(1)若,且在直线上,求抛物线的方程;
(2)当时,设直线与抛物线交于两点,过
分别作抛物线的准线的垂线,垂足为,连
轴于点,连结轴于点
①证明:
②若交于点,记△、四边形
、△的面积分别为,问
是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图是长度为定值的平面的斜线段,点为斜足,若点在平面内运动,使得的面积为定值,则动点P的轨迹是

A.圆            B.椭圆         C一条直线      D两条平行线
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.