当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为(  )A.y2=±4xB.y2...
题目
题型:不详难度:来源:
设斜率为2的直线l过抛物线y2ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为(  )
A.y2=±4xB.y2=±8C.y2=4xD.y2=8x

答案
B
解析
分析:先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得.
解答:解:抛物线y2=ax(a≠0)的焦点F坐标为(,0),
则直线l的方程为y=2(x-),
它与y轴的交点为A(0,-),
所以△OAF的面积为||?||=4,
解得a=±8.
所以抛物线方程为y2=±8x,
故选B.
核心考点
试题【设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为(  )A.y2=±4xB.y2】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线xy+4=0有且仅有一个交点,则椭圆的长轴长为(  )
A.3B.2C.2D.4

题型:不详难度:| 查看答案
已知点M是抛物线y2=4x上的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为________
题型:不详难度:| 查看答案
已知过抛物线的焦点,斜率为的直线交抛物线于)两点,且
(1)求该抛物线的方程;
(2)为坐标原点,为抛物线上一点,若,求的值
题型:不详难度:| 查看答案
已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2
(1)求双曲线C的方程;
(2)若直线lykx+与双曲线C左支交于AB两点,求k的取值范围
(3)在(2)的条件下,线段AB的垂直平分线l0y轴交于M(0,m),求m的取值范围
题型:不详难度:| 查看答案
设F是椭圆的右焦点,椭圆上的点与点F的最大距离为M,最小距离为N,则椭圆上与点F的距离等于的点的坐标是
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.