当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为(  )A.B.C.D....
题目
题型:不详难度:来源:
设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为(  )
A.B.C.D.

答案

解析

试题分析:设Q(x1,y1),F1(-c,0),F2(c,0),c>0,则|QF1|=a+ex1,|QF2|=a-ex1.在△QF1F2中,由余弦定理得 cos120°=-=,解得 x12=.∵x12∈(0,a2],∴0≤<a2,即4c2-3a2≥0.且e2<1,∴e=.故椭圆离心率的取范围是 e∈[, 1).故选A
点评:当Q点在短轴的端点时∠F1QF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题
核心考点
试题【设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为(  )A.B.C.D.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知点P到点的距离比它到直线的距离大1,则点P满足的方程为          .
题型:不详难度:| 查看答案
双曲线虚轴的一个端点为,两个焦点为,则双曲线的离心率为____________.
题型:不详难度:| 查看答案
已知点是抛物线的准线与双曲线的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则的最大值为_    __.
题型:不详难度:| 查看答案
已知A,B两点在抛物线C:x2=4y上,点M(0,4)满足=λ.
(1)求证:
(2)设抛物线C过A、B两点的切线交于点N.
(ⅰ)求证:点N在一条定直线上;    
(ⅱ)设4≤λ≤9,求直线MN在x轴上截距的取值范围.
题型:不详难度:| 查看答案
已知双曲线实轴在轴,且实轴长为2,离心率,  L是过定点的直线.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于,两点,且线段恰好以点为中点,若存在,求出直线L的方程,若不存,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.