当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知两定点,,动点满足,由点向轴作垂线段,垂足为,点满足,点的轨迹为.(1)求曲线的方程;(2)过点作直线与曲线交于,两点,点满足(为原点),求四边形面积的最大...
题目
题型:不详难度:来源:
已知两定点,,动点满足,由点轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足为原点),求四边形面积的最大值,并求此时的直线的方程.
答案
(1) (2) 直线的方程为
解析

试题分析:解(1)动点P满足,点P的轨迹是以E F为直径的圆,动点P的轨迹方程为.设M(x,y)是曲线C上任一点,因为PMx轴,点P的坐标为(x,2y), 点P在圆上,  ,
曲线C的方程是 .
(2)因为,所以四边形OANB为平行四边形,
当直线的斜率不存在时显然不符合题意;
当直线的斜率存在时,设直线的方程为y=kx-2,与椭圆交于两点,由
,由,得,即


     10分


,解得,满足,
,(当且仅当时“=”成立)
平行四边形OANB面积的最大值为2.
所求直线的方程为
点评:主要是考查了运用代数的方法来通过向量的数量积的公式,以及联立方程组,结合韦达定理来求解,属于中档题。
核心考点
试题【已知两定点,,动点满足,由点向轴作垂线段,垂足为,点满足,点的轨迹为.(1)求曲线的方程;(2)过点作直线与曲线交于,两点,点满足(为原点),求四边形面积的最大】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
曲线C的直角坐标方程为,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为 __________;
题型:不详难度:| 查看答案
由直线上的点向圆C:引切线,
求切线段长的最小值。
题型:不详难度:| 查看答案
已知双曲线的两个焦点恰为椭圆的两个顶点,且离心率为2,则该双曲线的标准方程为    (  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。
题型:不详难度:| 查看答案
已知椭圆的右焦点,过原点和轴不重合的直线与椭圆 相交于两点,且最小值为
(Ⅰ)求椭圆的方程;
(Ⅱ)若圆:的切线与椭圆相交于两点,当两点横坐标不相等时,问:是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.