当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知点P是双曲线C:左支上一点,F1,F2是双曲线的左、右两个焦点,且PF1⊥PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲...
题目
题型:不详难度:来源:
已知点P是双曲线C左支上一点,F1F2是双曲线的左、右两个焦点,且PF1PF2PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是(   )
A.B.2C.D.

答案
A
解析

试题分析:在三角形中,点N恰好平分线段PF2,点O恰好平分线段F1F2
∴ON∥PF1,又ON的斜率为,∴tan∠PF1F2= ,
在三角形中,设PF2=bt.PF1=at,
根据双曲线的定义可知|PF2|-|PF1|=2a,∴bt-at=2a,①
在直角三角形F1F2P中,|PF2|2+|PF1|2=4c2,∴b2t2+a2t2=4c2,②
由①②消去t,得,又c2=a2+b2
∴a2=(b-a)2,即b=2a,∴双曲线的离心率.选A.
点评:本题主要考查了双曲线的简单性质,考查了学生对双曲线定义和基本知识的掌握,属于基础题.
核心考点
试题【已知点P是双曲线C:左支上一点,F1,F2是双曲线的左、右两个焦点,且PF1⊥PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.
题型:不详难度:| 查看答案
已知抛物线和点为抛物线上的点,则满足的点有( )个。
A.B.C.D.

题型:不详难度:| 查看答案
已知双曲线为双曲线的右焦点,点,轴正半轴上的动点。
的最大值为(   )
A.B.C.D.

题型:不详难度:| 查看答案
椭圆轴负半轴交于点为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接于点D。
(1)如果,求椭圆的离心率; 
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。
题型:不详难度:| 查看答案
如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2
试问:是否存在直线AB,使得S1=S2?说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.