当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.(Ⅰ)若,求抛物线的方程;(Ⅱ)求△ABM面积的最大值....
题目
题型:不详难度:来源:
如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ)若,求抛物线的方程;
(Ⅱ)求△ABM面积的最大值.
答案
(I) ;(II)
解析

试题分析:(I) 写出直线的方程联立,消去.根据弦长公式,解得,所以.(II)根据(I) 设的距离:而M在直线AB上方,所以,所以当时,取最大值 此时
试题解析:(I) 根据条件得,消去
,则,又抛物线定义得
根据,解得 ,抛物线方程
(II)由(I) 知的距离:
由M在直线AB上方,所以,由(I)知时,取最大值 此时
核心考点
试题【如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.(Ⅰ)若,求抛物线的方程;(Ⅱ)求△ABM面积的最大值.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
直线过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为       
题型:不详难度:| 查看答案
中,.若以为焦点的椭圆经过点,则该椭圆的离心率(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.
题型:不详难度:| 查看答案
已知中心在原点O,焦点在x轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线的斜率依次成等比数列,
面积的取值范围.
题型:不详难度:| 查看答案
已知椭圆与双曲线有共同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,椭圆与双曲线的离心率分别为,则取值范围为(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.