当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 设A(x1,y1),B(x2,y2)是椭圆C:=1(a>b>0)上两点,已知m=,n=,若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.(...
题目
题型:不详难度:来源:
A(x1y1),B(x2y2)是椭圆C=1(a>b>0)上两点,已知mn,若m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
答案
(1)x2=1(2)是
解析
(1)∵2b=2,∴b=1,∴e.
a=2,c.故椭圆的方程为x2=1.
(2)①当直线AB斜率不存在时,即x1x2y1=-y2
m·n=0,得=0⇒.
A(x1y1)在椭圆上,所以=1,∴|x1|=,|y1|=S|x1||y1y2|=1=|x1|·2|y1|=1.
②当直线AB斜率存在时,设AB的方程为ykxb(其中b≠0),代入x2=1,得
(k2+4)x2+2kbxb2-4=0.
Δ=(2kb)2-4(k2+4)(b2-4)=16(k2b2+4)>0,x1x2x1x2,由已知m·n=0得x1x2=0⇔x1x2=0,代入整理得2b2k2=4,代入Δ中可得b2>0满足题意,
S|AB|=|b| =1.所以△ABC的面积为定值.
核心考点
试题【设A(x1,y1),B(x2,y2)是椭圆C:=1(a>b>0)上两点,已知m=,n=,若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.(】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知定点A (p为常数,p>0),Bx轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点Gy轴上.

(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.
题型:不详难度:| 查看答案
已知椭圆C=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线lxy=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MAMB交椭圆于AB两点,设两直线的斜率分别为k1k2,且k1k2=4,证明:直线AB过定点.
题型:不详难度:| 查看答案
已知椭圆C=1(a>b>0)的两个焦点F1F2和上下两个顶点B1B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2的斜率为k(k≠0)的直线l与椭圆C相交于EF两点,A为椭圆的右顶点,直线AEAF分别交直线x=3于点MN,线段MN的中点为P,记直线PF2的斜率为k′,求证: k·k′为定值.
题型:不详难度:| 查看答案
已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:
题型:不详难度:| 查看答案
已知椭圆,过椭圆上一点作倾斜角互补的两条直线,分别交椭圆两点.则直线的斜率为          .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.