当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知椭圆的离心率为,短轴端点分别为.(1)求椭圆的标准方程;(2)若,是椭圆上关于轴对称的两个不同点,直线与轴交于点,判断以线段为直径的圆是否过点,并说明理由....
题目
题型:不详难度:来源:
已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.
答案
(1)椭圆的标准方程为;(2)点不在以线段为直径的圆上.
解析

试题分析:(1)求椭圆的标准方程,已知椭圆的离心率为,短轴端点分别为,可设椭圆方程为,由,可得,从而得椭圆的标准方程;(2)由于,是椭圆上关于轴对称的两个不同点,可设,若点在以线段为直径的圆上,则,即,即,因此可写出直线的方程为,令,得,写出向量的坐标,看是否等于0,即可判断出.
(1)由已知可设椭圆的方程为:             1分
,可得,                              3分
解得,                           4分
所以椭圆的标准方程为.                           5分
(2)法一:设                              6分
因为
所以直线的方程为,                   7分
,得,所以.                         8分
所以                          9分
所以,                     10分
又因为,代入得                11分
因为,所以.                12分
所以,                              13分
所以点不在以线段为直径的圆上.                    14分
法二:设直线的方程为,则.          6分
化简得到
所以,所以,                               8分
所以
所以,所以                               9分
所以                                     10分
所以,                                  12分
所以,                                                               13分
所以点不在以线段为直径的圆上.                                      14分
核心考点
试题【已知椭圆的离心率为,短轴端点分别为.(1)求椭圆的标准方程;(2)若,是椭圆上关于轴对称的两个不同点,直线与轴交于点,判断以线段为直径的圆是否过点,并说明理由.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
如图,已知椭圆,直线的方程为,过右焦点的直线与椭圆交于异于左顶点两点,直线交直线分别于点
(1)当时,求此时直线的方程;
(2)试问两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.

题型:不详难度:| 查看答案
如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).

(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.