当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 已知直线l1:4x-3y+6=0和直线l2:x=- (p>2).若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.(1)求抛物线C...
题目
题型:不详难度:来源:
已知直线l1:4x-3y+6=0和直线l2x=- (p>2).若拋物线Cy2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.
答案
(1)y2=4x(2)存在定点Q(1,0),使Q在以MN为直径的圆上.
解析
(1)由定义知l2为抛物线的准线,抛物线焦点F,由抛物线定义知抛物线上点到直线l2的距离等于其到焦点F的距离.
所以抛物线上的点到直线l1和直线l2的距离之和的最小值为焦点F到直线l1的距离.
所以2=,则p=2,所以抛物线方程为y2=4x.
(2)设M(x0y0),由题意知直线斜率存在,设为k,且k≠0,所以直线l方程为yy0k(xx0),
代入y2=4xxky2-4y+4y0k=0.
Δ=16-4k(4y0k)=0,得k.
所以直线l方程为yy0 (xx0),
x=-1,又由=4x0,得N.
Q(x1,0)则=(x0x1y0),.
由题意知·=0,即(x0x1)(-1-x1)+=0,把=4x0代入,得(1-x1)x0x1-2=0,因为对任意的x0等式恒成立,所以
所以x1=1,即在x轴上存在定点Q(1,0),使Q在以MN为直径的圆上.
核心考点
试题【已知直线l1:4x-3y+6=0和直线l2:x=- (p>2).若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.(1)求抛物线C】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
若直线l:与抛物线交于A、B两点,O点是坐标原点。
(1)当m=-1,c=-2时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。
题型:不详难度:| 查看答案
抛物线y=-4x2的焦点坐标是                                    (  )
A.(0,-1)B.(-1,0)C.(0,D.(,0)

题型:不详难度:| 查看答案
设抛物线的焦点为F,准线为,点,线段与抛物线交于点B,过B作的垂线,垂足为M。若,则__________
题型:不详难度:| 查看答案
(本题满分15分)如图所示,已知椭圆和抛物线有公共焦点, 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点
(1)写出抛物线的标准方程;
(2)若,求直线的方程;
(3)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

题型:不详难度:| 查看答案
抛物线x2=y的焦点坐标是(  )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.