当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C...
题目
题型:不详难度:来源:
如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.
答案
(1)2  (2)
解析

解:(1)抛物线y2=4x的准线l的方程为x=-1.
由点C的纵坐标为2,点C在抛物线E上,
得点C的坐标为(1,2),
所以点C到准线l的距离d=2,
又|CN|=|CO|=,
所以|MN|=2=2=2.
(2)设C(,y0),
则圆C的方程为(x-2+(y-y0)2=+,
即x2-x+y2-2y0y=0.
由x=-1,
得y2-2y0y+1+=0,
设M(-1,y1),N(-1,y2),则

由|AF|2=|AM|·|AN|,
得|y1y2|=4,
所以+1=4,
解得y0,此时Δ>0.
所以圆心C的坐标为(,)或(,-),
从而|CO|2=,
|CO|=,
即圆C的半径为.
核心考点
试题【如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
过抛物线的焦点作倾斜角为的直线交抛物线于两点,若线段的中点坐标为,则的值为(    )
A.   B.  C.  D.

题型:不详难度:| 查看答案
如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知直线x-y=2与抛物线y2=4x交于A、B两点,那么线段AB的中点坐标是       
题型:不详难度:| 查看答案
抛物线的焦点坐标为
A.B.C.D.

题型:不详难度:| 查看答案
若抛物线上总存在两点关于直线对称,则实数的取值范围是
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.