当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.(1)求圆C2的圆心M到抛物线C...
题目
题型:不详难度:来源:
如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.
答案
(1)  (2)存在点P满足题意,点P的坐标为(±,2)
解析

解:(1)因为抛物线C1的准线方程为y=-,
所以圆心M到抛物线C1的准线的距离为
=.
(2)设点P的坐标为(x0,),抛物线C1在点P处的切线交直线l于点D.
再设A,B,D的横坐标分别为xA,xB,xD,
过点P(x0,)的抛物线C1的切线方程为
y-=2x0(x-x0).①
当x0=1时,过点P(1,1)与圆C2相切的直线PA的方程为
y-1=(x-1).
可得xA=-,xB=1,xD=-1,xA+xB≠2xD.
当x0=-1时,过点P(-1,1)与圆C2相切的直线PB的方程为y-1=-(x+1),
可得xA=-1,xB=,xD=1,xA+xB≠2xD,
所以-1≠0.
设切线PA、PB的斜率为k1,k2,
则PA:y-=k1(x-x0),②
PB:y-=k2(x-x0),③
将y=-3分别代入①②③得
xD=(x0≠0),
xA=x0-,
xB=x0-(k1,k2≠0),
∴xA+xB=2x0-(+3)(+).
=1,
即(-1)-2(+3)x0k1+(+3)2-1=0.
同理,(-1)-2(+3)x0k2+(+3)2-1=0.
∴k1、k2是方程(-1)k2-2(+3)x0k+(+3)2-1=0的两个不相等的根,
从而k1+k2=,
k1·k2=.
因为xA+xB=2xD,
所以2x0-(3+)(+)=,
+=.
从而=,
进而得=8,
所以x0.
综上所述,存在点P满足题意,点P的坐标为(±,2).
核心考点
试题【如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.(1)求圆C2的圆心M到抛物线C】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
已知直线x-y=2与抛物线y2=4x交于A、B两点,那么线段AB的中点坐标是       
题型:不详难度:| 查看答案
抛物线的焦点坐标为
A.B.C.D.

题型:不详难度:| 查看答案
若抛物线上总存在两点关于直线对称,则实数的取值范围是
A.B.C.D.

题型:不详难度:| 查看答案
已知抛物线方程为,直线过定点,斜率为,当直线与抛物线只有一个公共点时,斜率取值的集合为________________
题型:不详难度:| 查看答案
设抛物线的焦点为F,过点的直线与抛物线相交于AB两点,与抛物线的准线相交于点C,=2,则BCFACF的面积之比=(    )
A.B.C.D.2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.